

PREPAR3D GUIDE MAJESTIC SOFTWARE'S BOMBARDIER Q400 "DASH 8"

TABLE OF CONTENTS

- PART 1 INTRODUCTION
- PART 2 COCKPIT LAYOUT
- PART 3 FLIGHT PLAN & PRE-START
- PART 4 START-UP PROCEDURE
- PART 5 TAXI
- PART 6 TAKEOFF, CLIMB & CRUISE
- PART 7 AUTOPILOT
- PART 8 ENGINES & HYDRAULICS
- PART 9 ICE PROTECTION
- PART 10 APPROACH & LANDING

MAJESTIC Q400 EDITION: PRO PLATFORM: PREPAR3D V 4.1

HSBC C

cademic Licens

The **Dash 8 "Q400"** is a series of twin-engine, medium-range, turboprop regional airliners. The aircraft was introduced by de Havilland Canada (DHC) in 1984. Originally named the DHC-8 (nicknamed "Dash 8"), the aircraft started as the -100 series, then the -200 series, the -300 series and finally the -400 series. They are now produced by Bombardier Aerospace. De Havilland Canada was sold to Boeing in 1986, but then re-sold to Montreal-based Bombardier Aerospace in 1992. This acquisition was done in the midst of Bombardier's expansion of the late 80's; it had acquired Canadair in 1986, Short Brothers in 1989 and then Learjet as well in 1990.

The Dash 8 was developed from the de Havilland Canada Dash 7, which featured extreme short take-off and landing (STOL) performance. With the Dash 8, DHC focused on improving cruise performance and lowering operational costs. The engine chosen was the Pratt & Whitney Canada PW100. The aircraft has been delivered in four series. The Series 100 has a maximum capacity of 39, the Series 200 has the same capacity but offers more powerful engines, the Series 300 is a stretched, 50-seat version, and the Series 400 is further stretched to 78 passengers. Over 1,000 Dash 8s of all models have been built.

The DHC-8-400 "Q400" is a stretched and improved version of the Dash 8 that entered service in 2000. It is equipped with an ANVS system (Active Noise and Vibration Suppression). Models delivered after 1997 have cabin noise suppression and are designated with the prefix "Q", as in "Q400". Its 360 knot (667 km/h) cruise speed is 60–90 knots (111–166 km/h) higher than its competitors and predecessors. Powered by PW150A engines rated at 5,071 shp (3,781 kW) at maximum power (4,850 shp or 3,620 kW maximum continuous rated). The maximum operating altitude is 25,000 ft (7,600 m) for the standard version. Production of the Series 100 ceased in 2005, and the Q200 and Q300 in 2009.

The Q400 has been through two company acquisitions, one of which was near fatal. The engineers who worked on this airframe are very proud of its rich history and know all too well the challenges of stretching the airframe and stretching a shrinking budget. We have to remember that this started as a bush flying aircraft that has been marketed to compete with jets. The aircraft is incredibly diverse being able to serve in high end commuter markets, to military platforms and even as a water bomber. This is an aircraft that has adapted to changing economic times and kept a great safety rating.

This is an aircraft designed to operate in the harsh canadian winter and difficult weather conditions that you will have to fly into without expensive automation systems: there is no auto-throttle nor auto-land system. The approaches need to be planned very carefully and most of your landings will be quite "firm" because of the landing gear's configuration. Give it a chance and I am sure that you will enjoy its superbly simulated systems. Great job, Majestic Software!

INTRODUCTION

PART

<u>DHC-1 Chipmunk (1946)</u>

DHC-2 Beaver (1947)

DHC-3 Otter (1951)

DHC-4 Caribou (1958)

DHC-8 Dash 8 "Q-Series" (1983)

DHC-6 Twin Otter (1965)

DHC-7 Dash 7 (1975)

De Havilland Canada Aircraft

TUTORIAL STRUCTURE

Before you even step foot in your virtual cockpit, you need to know where you are, where you are going, how you will get there, what you need to get there. This document is structured like a short tutorial flight.

The flight tutorial is structured as follows:

- Familiarize yourself with the cockpit layout
- Plan your flight
 - Determine the flight route, fuel & cargo loads
 - Spawn the aircraft and set it in a Cold & Dark state
 - Provide aircraft with power
 - Program the FMC (Flight Management Computer)
- Start–up the aircraft and make it ready for flight
- Тахі
- Takeoff
- Climb and cruise
- Explore autopilot capabilities
- Explain engine and hydraulic system functionalities
- Explain the ice protection systems
- Descend, approach and land

BEST RESOURCES

DISCLAIMER: Do not use this guide for real life flying. I mean it.

Majestic Software Downloads Section http://majesticsoftware.com/mjc8q400/downloads.html

Smart Cockpit Dash-8-400 http://www.smartcockpit.com/plane/BOMBARDIER/DASH-8-400.html

Froogle Sims Q400 Fully Loaded Playlist (Youtube) https://www.youtube.com/watch?v=PkOc2gIS s8&list=PL xDmvmUFDEjAyzamHQaoM7hXrJudErUX

Airline2Sim (Payware Course) https://www.airline2sim.com/course/q400-cadet/

Airline2Sim SIDs and STAR (Youtube) https://www.youtube.com/watch?v=CKhxjVHTJYc

Aircraft Icing: https://aircrafticing.grc.nasa.gov/1_1_3_3.html

0

8

0

5

3

Circuit Breaker Panel

Side Window De-Mist Control AFT = OPEN FWD = CLOSED

Low Level Vents Control AFT = OPEN FWD = CLOSED

10

LAYOUT COCKPIT N PART

Academic License

Circuit Breaker Panel Lighting Control Toggle Switch

Takeoff Warning System Test Toggle Switch

ADC (Air Data Computer) Test Toggle Switch

Stall Warning Test Toggle Switch

Ground Crew Connection Annunciator

GPWS (Ground Proximity Warning System) Flap Override Button

Alternate Pilot Wiper Pushbutton

Windshield Wiper Ice Detection Light Pushbutton

> Propeller Overspeed Governor Test Toggle Switch

Pilot's Side Panel Dimmer Knob

Nosewheel Steering Toggle Switch AFT = OFF FWD = NOSEWHEEL STEERING ON

Push-To-Talk (PTT) Switch

Steering Hand Control (Tiller) Used to steer aircraft on ground. Left click and drag to steer.

0

247

HDG 245°

O- VORI 2

121

Hunny and

PART 2 – COCKPIT LAYOUT

Q400

Transmit/Interphone Push-to-Talk Switch

h-to-Talk Switch

Elevator Trim Switches

Autopilot Disengage Pushbutton

Yoke

ATC (Air Traffic Controller) Identification Pushbutton

ALT SEL

14000

14000

TCAS STBY

29.92 IN

DHEZ

NH

- HH

0

P

OM

PFCS

POILERS

ELEV

Academic License

3

DATA

DTO

+PILOT DATA Co Data +TCAS FILTER

PERI

021

TCAS

--- 114

DME2

0

DATA NAV

RUB

Q400 ++

PART 2 – COCKPIT LAYOUT

Circuit Breaker Panel Lighting Control Toggle Switch

Copilot's Side Panel Dimmer Knob

Forward Outflow Valve Guard

6

Windshield Wiper Ice **Detection Light Pushbutton**

> Microphone Interphone/Transmit **Toggle Switch**

Forward Outflow Valve Control

Oxygen Supply Pressure (psi)

De-Ice Pneumatic Pressure (left and right systems)

Q400

Throttle Power Levers Positions: MAX / FLIGHT IDLE / DISC / MAX REV

Control Lock Lever Physically blocks throttle power levers

Parking Brake FWD: OFF (DISENGAGED) AFT: ON (ENGAGED)

Elevator Trim Indicator

KOOL FOR-LON

USUCO

10

0

6

Flaps Control Lever 0 / 5 / 10 / 15 / 35 deg

SIR

A

S

Condition Levers

26

- MAX: 1020 RPM (Normal Takeoff Rating)
- MCL: 900 RPM (Maximum Climb Rating)
- MIN: 850 RPM (Maximum Cruise Rating)
- START & FEATHER: Propeller Blade Angle is Feathered during engine start
- FUEL OFF: Fuel shutoff

Condition Lever Friction Control

Throttle Power Lever Friction Control

PART 2 – COCKPIT LAYOUT

Q400

Q400

LAYOUT

COCKPIT

N

PART

Options - Key Assignments		
General	Controller Joystick - HOTAS	Warthog
Application Information	Flight Mode Normal	All Events
Sound	EVENT	ASSIGNMENT REPEAT ON RELEASE
Traffic	Tail wheel (lock/unlock)	Shift + G
Realism	Takeoff assist (arm/disarm)	Shift + I
	Takeoff assist (trigger)	Shift + Space
Graphics	Throttle (cut)	F1
Graphics	Throttle (decrease quickly)	F2
Display	Throttle (decrease quickly)	Button 3
World	Throttle (decrease)	N. 13
	Throttle (decrease)	
Lighting	Throttle (full)	F4 🗌 j
Weather	Throttle (increase quickly)	
	Throttle (increase)	FS
	Throttle (increase)	N m 9
Controls	Time Preview Window (display/hide)	
	Toggle Automatic Targeting For Selected Guns	
Key Assignments	Toggle Context Menu	A ps 🗹
Axis Assignments	Toggle DIS Connection	
Calibration	ToggleDesignator	
Other	Tow plane (request)	S ift + Ctrl + Y
	Export Import Reset Defaults	New Delete Change
		Cancel OK

The Thrust Reverser lever can be moved by pressing and holding the "Throttle (decrease quickly)" control mapped to your joystick. Make sure that the "Repeat" slider is set fully to the right. The default key binding is "F2".

Take note that the Reverse Thrust lever can only be engaged if your throttle is at IDLE. The reason for that is a mechanical stopper that prevents you from engaging thrust reversers at high throttle settings.

G

E.

S

ARCDU 1 (Audio & Radio **Control Display Unit)** Frequencies: UHF1 / UHF2 / VOR1 / VOR2/ADF1/ADF2/INT/ATC1

2

000.000

Qu

08.000

OLC

0

22

318.

318.

ILERON

8

6

Ø

ද්ය

and the second s

8

3

13

a

a

巨鹰齿

IRS (Inertial Reference System) 1 **Mode Switch** OFF: OFF NAV: Navigation Mode ATT: Attitude Information Only

ILANG

Academic License

MFD (Multifunction Display) Page Selector **Electrical Systems Page Engine Systems Page** Fuel Systems Page Doors Systems Page Test Button (not simulated)

0000

80

EFIS (Electronic Flight Instrument System) ADC (Air Data Computer) Source Selector

> WX (Weather Radar) Mode Buttons WX: Weather Radar Mode WXA: Weather Radar Alert Mode GND MAP: Ground Map Mode

> > WX (Weather Radar) Tilt Control

HGS (Head-Up Guidance System) **Control Panel**

29

MFD (Multifunction Display) 1 Mode PFD: Primary Flight Display NAV: Navigation Page SYS: System Page ENG: Engine Page

20

Rudder Trim Control

Rudder Trim Indicator

Aileron Trim Control LWD: Left Wing Down

RWD: Right Wing Down

Aileron Trim Indicator

EFIS (Electronic Flight Instrument System) Attitude/Heading Source Selector

ED (Engine Display) Brightness Control

ERO

WX (Weather Radar) Gain Control

WX (Weather Radar) Power Switch OFF / STANDBY / TEST / ON

g

> ARCDU 2 (Audio & Radio Control Display Unit) Frequencies: UHF1 / UHF2 / VOR1 / VOR2/ ADF1 / ADF2 / INT / ATC1

> > 430

108.00

0

<u>PER</u>

6

ÅL

ED BRI

E SS

22

800 100

Ċ

ð

108.000

COLL!

318.0

318.0

55

23

8

ae.

题

8

27 Nog.

8

र्ष्व

2

EEE

2

E

SPAG

6

œ

IEST

145

Q

Nose Landing Gear Emergency Release Lever

NOSE L/G RELEASE

THURSDAY AND

101 101 1

Academic License

Q400 T

P

21 S F

Engine 1 Extinguisher Aft/Forward Bottle Selector Switch **APU Extinguisher Bottle Arming Light Engine 1 Fuel Valve Indicator APU (Auxiliary Power Unit) Fuel Valve Indicator** APU EXTG EXTG FWD BTL ۲ ۲ CLOSED TEST **APU Fire Extinguish Button** FIRE BOTTLE **APU Fire Detected Light** GGAGE TEST BTL LOW **APU Extinguisher Bottle Low / Fault light** CONSOLE ERHEAD **APU Fire Test Switch** OFF I)) OFF **Engine 1 Fire Detection Fault Lights** GEN 2 MAIN BUS B OFF BRT (Systems A & B) Aft Baggage Compartment STOP **Engine 1 Fire Extinguish Handle** ICE PROTECTION **Fire Detection Panel** (Illuminates when fire is detected) TAL **Engine 1/2 Fire Detection Test** DOME STORM/ DOME -OFF MANUAL **Selector Switch** AST **Engine 2 Fire Extinguish Handle** APU CONTROL (Illuminates when fire is detected) PWR

AYOUT Ĺ COCKPIT N 2 4 Δ

Δ

CONTRO

OUCT

In real life, you cannot just fly an Q400 wherever and whenever you please. Just like on land, the sky is littered with an intricate network of waypoints and aerial highways. Therefore, it is necessary to plan your flight route and to determine how much fuel you will need to carry in order to reach your destination.

In order to do this, we will use a tool called "Online Flight Planner" available here: http://onlineflightplanner.org/

There are a number of fuel planners available online. These estimates may or may not be very accurate. There are specific charts created by Bombardier to come up with accurate fuel estimates which are unfortunately not available to the public. Therefore, for the sake of simplicity we will just use a rule of thumb that's good enough for the purpose of this tutorial.

Airways: CYYZ SID MIGLO STAR CYUL

Provided by A RouteFinder

METAR:

Departure: CYYZ 100500Z 21005KT 15SM BKN030 M01/M08 A3035 RMK SC7 SLP287 Destination: CYUL 100500Z 23005KT 200V280 15SM FEW240 M09/M13 A3035 RMK CI1 SLP282

> AVIATION WEATHER CENTER Provided by

Provided by Fuelplanner.com

Q400

PRE-START

Š

PLAN

FLIGHT

m

PART

Today's flight will start from TORONTO / LESTER B. PEARSON INTERNATIONAL AIRPORT (CYYZ) and our destination will be MONTREAL / PIERRE-ELLIOTT TRUDEAU **INTERNATIONAL AIRPORT (CYUL).**

Using the "Online Flight Planner" available here: <u>http://onlineflightplanner.org/</u> we will enter the Departure airport (CYYZ), the Destination airport (CYUL) and the AIRAC Cycle desired (we will use the AIRAC cycle 1710 as explained on the next page).

Click on CREATE PLAN to generate a flight plan.

	Desi	red file formats	
.rte (Flight One ATR)	.fg	ıfp (FlightGear)	.flp (Airbus X)
.fltplan (iFly)	.fn	ns (X-Plane)	.kml (Google Earth)
.mdr (Leonardo MD80)		df	.pln (FS 2004)
.pin (FS X)	.ro	oute (iFly 747 V2)	.rte (PMDG)
.rte (Level-D)	.rt	e (QualityWings)	.txt (JarDesign A320)
.fmc (VasFMC)			
Swap departure and destination			Distance: 273.9
Departure	CYYZ	Country Code	
Destination	CYUL	Country Code	
AIRAC Cycle	1710 -		
Altitude range (Min/Max)	FL240 -	FL240 -	
Level	Both -	←	

Choose an airport

Info

nm

Route

Aircraft Bombardier Dash 8 Q400 Bombardie D Fuel unit lbs Choose your fuel units: LBS in our case Vise SIDs Use STARs RNAV equipped TACAN routes NATs

Create plan

Click CREATE PLAN

Q400

START

PRE

PLAN &

Т

FLG

ART

In aviation, an **Aeronautical Information Publication** (or **AIP**) is defined by the International Civil Aviation Organization as a publication issued by or with the authority of a state and containing aeronautical information of a lasting character essential to air navigation. It is designed to be a manual containing thorough details of regulations, procedures and other information pertinent to flying aircraft in the particular country to which it relates. It is usually issued by or on behalf of the respective civil aviation administration. AIPs are kept up-to-date by regular revision on a fixed cycle. For operationally significant changes in information, the cycle known as the **AIRAC (Aeronautical Information Regulation And Control)** cycle is used: revisions are produced every 56 days (double AIRAC cycle) or every 28 days (single AIRAC cycle). These changes are received well in advance so that users of the aeronautical data can update their flight management systems (FMS). (Source: https://en.wikipedia.org/wiki/Aeronautical Information Publication)

In other words, some Youtube tutorials might show you flight routes with certain waypoints that got changed with more recent AIRAC updates. Some waypoints or even airports may not exist anymore. Therefore, you have two options:

- 1. Plan your flight using the default AIRAC cycle programmed in the FMC when it was first released by Majestic Software during early October, 2017 (period **10**) 20**17** (AIRAC cycle **1710**), which is what we will do for this tutorial. This option is free and simple if you fly alone. However, if you fly with online ATCs in multiplayer that use the latest AIRAC database, you should go for the second option.
- 2. Plan your flight using the latest AIRAC cycle. You will need to update your AIRAC, SID and STAR database by using a paid subscription service called "Navigraph", which is available here https://www.navigraph.com/FmsDataManualInstall.aspx.

AIRAC effective dates (28-day cycle) [edit]

The current AIRAC cycle is 1605 (effective 28 Apr 2016).

															•				
#	2003	2004*	2005	2006	2007	2008*	2009	2010	2011	2012*	2013	2014	2015	2016*	2017	2018	2019	2020*	
01	23 Jan	22 Jan	20 Jan	19 Jan	18 Jan	17 Jan	15 Jan	14 Jan	13 Jan	12 Jan	10 Jan	9 Jan	8 Jan	7 Jan	5 Jan	4 Jan	3 Jan	2 Jan	
02	20 Feb	19 Feb	17 Feb	16 Feb	15 Feb	14 Feb	12 Feb	11 Feb	10 Feb	9 Feb	7 Feb	6 Feb	5 Feb	4 Feb	2 Feb	1 Feb	31 Jan	30 Jan	
03	20 Mar	18 Mar	17 Mar	16 Mar	15 Mar	13 Mar	12 Mar	11 Mar	10 Mar	8 Mar	7 Mar	6 Mar	5 Mar	3 Mar	2 Mar	1 Mar	28 Feb	27 Feb	
04	17 Apr	15 Apr	14 Apr	13 Apr	12 Apr	10 Apr	9 Apr	8 Apr	7 Apr	05 Apr	4 Apr	3 Apr	2 Apr	31 Mar	30 Mar	29 Mar	28 Mar	26 Mar	Noto:
05	15 May	13 May	12 May	11 May	10 May	8 May	7 May	6 May	5 May	03 May	2 May	1 May	30 Apr	28 Apr	27 Apr	26 Apr	25 Apr	23 Apr	• For the FSX version of the O400 use
<u> 06</u>	12 Jun	10 Jun	9 Jun	8 Jun	7 Jun	5 Jun	4 Jun	3 Jun	2 Jun	31 May	30 May	29 May	28 May	26 May	25 May	24 May	23 May	21 May	AIRAC cycle 1304 since this version
07	10 Jul	8 Jul	7 Jul	6 Jul	5 Jul	3 Jul	2 Jul	1 Jul	30 Jun	28 Jun	27 Jun	26 Jun	25 Jun	23 Jun	22 Jun	21 Jun	20 Jun	18 Jun	was released in late april 2013
0 8	7 Aug	05 Aug	4 Aug	3 Aug	2 Aug	31 Jul	30 Jul	29 Jul	28 Jul	26 Jul	25 Jul	24 Jul	23 Jul	21 Jul	20 Jul	19 Jul	18 Jul	16 Jul	• For the Prepar3d Version 4.1 of the
0 9	4 Sep	02 Sep	1 Sep	31 Aug	30 Aug	28 Aug	27 Aug	26 Aug	25 Aug	23 Aug	22 Aug	21 Aug	20 Aug	18 Aug	17 Aug	16 Aug	15 Aug	13 Aug	Q400, use AIRAC cycle 1710 .
10	2 Oct	30 Sep	29 Sep	28 Sep	27 Sep	25 Sep	24 Sep	23 Sep	22 Sep	20 Sep	19 Sep	18 Sep	17 Sep	15 Sep	14 Sep	13 Sep	12 Sep	10 Sep	
11	30 Oct	28 Oct	27 Oct	26 Oct	25 Oct	23 Oct	22 Oct	21 Oct	20 Oct	18 Oct	17 Oct	16 Oct	15 Oct	13 Oct	12 Oct	11 Oct	10 Oct	8 Oct	
12	27 Nov	25 Nov	24 Nov	23 Nov	22 Nov	20 Nov	19 Nov	18 Nov	17 Nov	15 Nov	14 Nov	13 Nov	12 Nov	10 Nov	9 Nov	8 Nov	7 Nov	5 Nov	
13	25 Dec	23 Dec	22 Dec	21 Dec	20 Dec	18 Dec	17 Dec	16 Dec	15 Dec	13 Dec	12 Dec	11 Dec	10 Dec	8 Dec	7 Dec	6 Dec	5 Dec	3 Dec	
14																		31 Dec	

FUEL

For a flight of approx. 290 nm, fuel planning can be estimated with the following graph from MJCJavelin (http://majesticsoftware.com/forums/discussion/344/fuel-planning/p1), which he obtained by programing a regression and an interpolation based on fuel consumption tables:

Imperial Units

Fuel for flight = Fuel Quantity for required distance (300 nm approx.) on graph below = 1.3 tons = 2600 lbs (or 1.3 tons x 2000 lbs/ton) Reserve Fuel = 2500 lbs (approximative figure) Total (Block) Fuel = Fuel for Flight + Reserve Fuel = 5100 lbs

Note: An alternate way to calculate the fuel for flight is to use a fuel consumption of 1300 lbs of fuel per engine per hour of flight. For an hour-long flight from Montreal to Toronto, the fuel quantity would be: Fuel for Flight = 1300 lbs/hour x 2 engines x 1 hour = 2600 lbs approx.

TRIP FUEL

Lester B. Pearson International Airport (CYYZ) ⇒ Montreal / Pierre Elliott Trudeau International Airport (CYUL)

ID	Frequency	Track	Distance (nm)	Coor	dinates	Name/Remarks				
CYYZ	-	0	0	N43°40'36.18"	W079°37'50.36"	LESTER B. PEARSON INTL				
MIGLO	-	72	158	N44°38'09.00"	W076°12'37.89"	MIGLO				
CYUL	-	69	116	N45°28'13.67"	W073°44'27.35"	PIERRE-ELLIOTT-TRUDEAU INTL				

A waypoint can be enabled/disabled by clicking on it (except first two and last two waypoints)

3 fixes, 274 nm

Airways:

CYYZ SID MIGLO STAR CYUL

Provided by A RouteFinder

Fuel quantity for Bombardier Dash 8 Q400							
	Fuel	Time					
Fuel Usage	2149 lbs	01:02					
Reserve Fuel	2562 lbs	01:15					
Fuel on Board	4712 lbs	02:17					

Prescribed flight level

FLIGHT ROUTE (POTENTIAL)

The flight route we could take from onlineflightplanner.com is: CYYZ SID MIGLO STAR CYYZ

But what does it all mean? Here is a breakdown of this route:

- Depart from Toronto Lester B. Pearson Airport (CYYZ)
- Follow the SID (Standard Instrument Departure) route from CYYZ to MIGLO
- Navigate to MIGLO VOR

PRE-START

8

PLAN

FLIGHT

m

ART

0

Q400

- Follow the STAR (Standard Terminal Arrival Route) from MIGLO to CYUL
- Land at Montreal Pierre-Elliott Trudeau Airport (CYUL)

WOAH, STOP RIGHT THERE!

Did you really think the flight plan would be that easy? No Sir/Madam! We will spice things up a bit and slightly modify the flight plan. Why? Because that simple flight plan will not force you to know how to plug in airways and use the FMS (Flight Management System) to do cool things like giving you lists of waypoints already stored in the database.

Relax, we won't do a complicated flight plan like Boeing's custom "787shaped" flight plan. We will just modify a little bit the existing flight plan using Sky Vector, a great tool available for free online. See next page.

Lester B. Pearson International Airport (CYYZ) ⇒ Montreal / Pierre Elliott Trudeau International Airport (CYUL)											
ID	Frequency	Track	Distance (nm)	Coor	dinates	Name/Remarks					
CYYZ	-	0	0	N43°40'36.18"	W079°37'50.36"						
MIGLO	-	72	158	N44°38'09.00"	W076°12'37.89"	MIGLO					
CYUL	-	69	116	N45°28'13.67"	W073°44'27.35"	PIERRE-ELLIOTT-TRUDEAU INTL					
3 fixes, 274 Airways: CYYZ S	4 nm. SID MIGLO	STAR	A waypoint car	n be enabled/disab	oled by clicking on it	(except first two and last two waypoints). Provided by ▲◀ RouteFinder					
Map Sati	ellite Huntsvill 400 Orillia Ka	Alg Pro F	onquin vincial Park	MIGL Inters	O X Section	417 Cornwall	North Contraction of the second				

Kingston

81

Watertown

81

Syracuse

Jan data ©2018 Google

Terms of Use

Belleville

Rochester

Bramptono Loronto

Hamilton

Google Niagara Falls

Mississauga

Prince Edward

0

PLANNING THE FLIGHT

FLIGHT ROUTE (ACTUAL) <- This is what we'll use

The actual flight route we will take is: CYYZ SID DEDKI Q913 IGSEB DCT MIGLO STAR CYUL

Write this route down. This is the one we will plug in the Flight Management System (FMS).

But what does it all mean? Here is a breakdown of this route:

- Depart from Toronto Lester B. Pearson Airport (CYYZ)
- Follow the SID (Standard Instrument Departure) route from CYYZ to DEDKI
- Follow Q913 airway

CYYZ

- Navigate to IGSEB VOR
- Navigate directly from IGSEB to MIGLO VOR ("DCT" means "Direct to")
- Follow the STAR (Standard Terminal Arrival Route) from MIGLO to CYUL

DEDKI

2500 MSL

SAN MILL TORONTO FIR CZ

LAKE

• Land at Montreal Pierre-Elliott Trudeau Airport (CYUL)

Copyright © 2017 SkyVector® About Us Privacy Forum Advertise

50 **f** 🖸

WHAT IS A **SID** AND A **STAR**?

A **SID** (Standard Instrument Departure) is a small initial route which leads an aircraft from the runway they've just taken off from to the first point in his/her intended route. An airport usually has a lot of aircraft departing from it's runways. To save confusion (and for safety), a busy airport will publish standard routes from it's runways to the various routes away from that airport. This way a controller can be sure that even if a steady stream of aircraft is leaving the airport they will all be following in a nice neat line, one behind the other (that's the idea anyhow!).

Standard routes are the preferred method to fly from airport to airport. This is why we use a flight plan generator. Arriving at an airport is just the same. The **STARs** (STandard Arrival Routes) are also published in chart form and allow you to fly into an airport using standard procedures. This way, less communication is again needed with the controllers as (once you have declared your intention or been given a route to fly by name) the controller and you both know exactly how you are going to approach the airport. The end of the STAR route will normally leave your aircraft at a position where controllers can give you final instructions to set you up for a landing.

SIDs and STARs are quite similar to highways; they have speed limits and altitude restrictions at certain waypoints to make sure the air traffic is flying safely and on the same trajectory. The FMC (Flight Management Computer) will automatically try to respect these restrictions.

In other words, you can see SIDs and STARs like road junctions in the sky that lead to other waypoints and airways from or to your desired airport. One airport has many SIDs and STARs.

Typically, SIDs and STARs are provided by the ATC (Air Traffic Controller). Since we're doing a tutorial, I will just give you the SID and STAR to plug in the FMC.

PLANNING THE DEPARTURE - SID

These charts are for the SID (Standard Instrument Departure) from Toronto Pearson (CYYZ) to DEDKI. We intend to:

- 1. Spawn at Gate B22 (personal preference)
- 2. Taxi towards runway 05 (orientation: 057) using taxiways 3, Alpha-Juliet (AJ), Alpha (A), November (N), Echo (E), Golf (G), Hotel (H) and holding point H6.
- 3. Depart from CYYZ using the SID from CYYZ to DEDKI (DEDKI4) to a target altitude of 3000 ft (FL030). NOTE: the chart shows DEDKI3 (valid for November 2014) since I could not find the chart for DEDKI4 (valid for January 2018). Therefore, we will assume DEDKI3 and DEDKI4 are roughly the same for the purpose of this tutorial.
- 4. Climb to a cruising altitude of 24,000 ft

9C

to

118

BWY

05

06L/R

23

24L/R

Gnd speed-KT

At or above

1100/

At or above

1000/

ALKUT 17 NM

SAVUR 11 NM

210' per NM

220' per NM

Rwy 06L: 220' per NM to 1100'

Rwy 06R: 210' per NM to 1500'

At or above

1000

SAVUR

4. Climb to flight planned altitude

N43 30.2

W079 35.2

400

m

ART

Δ

PLANNING THE FLIGHT - SUMMARY

So there it is! This is more or less all the information you need to plan your flight!

Flight Plan Input to FMC

CYYZ SID DEDKI Q913 IGSEB DCT MIGLO STAR CYUL

Copyright © 2017 SkyVector® About Us Privacy Forum Advertise

54

MCDU/FMC IN A NUTSHELL

Most of the aircraft setup and flight planning will be done with the help of the MCDU, which encompasses various systems such as the FMC system.

MCDU: Multifunction Control Display Unit

FMC: Flight Management Computer

Fundamental component of a modern airliner's avionics. The FMC is a component of the FMS (Flight Management System), which is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan. All FMS contain a navigation database. The navigation database contains the elements from which the flight plan is constructed. The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), Navigation Display (ND), or Multifunction Display (MFD).

Fun fact: FMS installed on the Q400 is the UNS-1E by Universal Avionics Systems Corporation. It differs significantly from the usual Thales or Rockwell Collins FMCs you might have already seen on Boeing or Airbus aircraft.

MCDU/FMC IN A NUTSHELL

FMC -> Flight Management Computer

Q400

ART

L S

PRE.

Ø

7

1

٦

Т

LL

M

ART

- DATA : Obtains information and status about the FMS, Navigation database and attached sensors. It also has the "SERVICES" page which is used to simulate ground crew behavior such as setting a GPU (Ground Power Unit), or removing/installing landing gear locking pins.
- **NAV** : Displays navigation data pages.
- **VNAV** : Vertical Navigation page allows a pilot to define a desired vertical flight profile along the flight plan route. It also computes deviation from that profile.
- **DTO** : The "Direct To" key allows the pilot to alter his flight plan.
- **FUEL** : displays fuel and weight pages.
- **FPL** : The "Flight Plan" pages access waypoints, stored arrivals, departures, SIDs, and STARs.
- **PERF** : The "Flight Performance" page displays in flight performance information (read-only).
- **TUNE** : Selects and stores preselected frequencies for each radio.
- LIST : Displays a list of options during data entry
- MENU : Displays a list of alternate formats or options for the FUEL, FPL, NAV,
 VNAV or TUNE pages when selected. When the MENU key is active, the letter "M" will appear in a box on the title line of the selected page.
- **PREV/NEXT**: Cycles through previous and next page of selected FMC page
- BACK: Backspace (deletes text)
- MSG: Displays messages
- **ON/OFF DIM**: Turns ON or OFF Flight Management Computer
- ENTER: Enters data

Sounds complicated? Don't worry, it's much simpler than it looks. We'll see how it works in the tutorial section.

SET UP CONTROLS

The Q400 is steered on the ground by using a tiller.

However, in Prepar3d or FSX you cannot map a joystick axis to your nosewheel steering tiller: it's a limitation of the sim itself. In order to steer the aircraft, Majestic programmed different options available in their own custom Control Panel; you can either use the mouse to click and drag on the tiller lever, or you can have the tiller axis mapped to your stick aileron control. I suggest you use the latter option.

- 1. The Control Panel will not work properly if it is not run in "Administrator Mode". Make sure you have the Control Panel executable "mic84cspan.exe" property "Run the program as an administrator" ticked (right-click file & click "Properties" tab). This executable is available in: C:\Program Files\Lockheed Martin\Prepar3D v4\SimObjects\Airplanes\mjc8q400\cpan
- 2. Open the MJC8 Q400 control panel (mjc74cpsan.exe file) before starting Prepar3d
 - a) Open "mjc84cspan.exe" and go in "Flight Controls" tab
 - b) Click "Ailerons+Mouse" option
 - Click "Apply" c)

MANUAL PRODUCT PAGE ACCOUNT INFO 🛃 🗙

SOUND

COLD AND DARK

C WITHOUT HUD

MANUAL PRODUCT PAGE ACCOUNT INFO 🛃 🗙

SOUND

WEIGHT&

BALANCE

BOARDING

VIRTUAL COCKPIT MODEL : @ WITH HUD

ENGINE

CONTROLS

C READY TO TAXI C READY FOR TAKEOFF

WEIGHT&

BALANCE

FLIGHT

CONTROLS

SYSTEM

ENGINE

CONTROLS

COCKPIT STATE : C DEFAULT

AJC8 Q400

ONTROL PANEL

SHARED

COCKPIT

UNIT

PAUSE ON TOP OF DESCEND : @ OFF

SHARED

COCKPIT

MJC8 Q400

CONTROL PANEL

MASS & FUEL : C Kg ATMOSPHERIC PRESSURE : C hPa

CON

FLIGHT

CONFIG

SYSTEM

FLIGHT CONTROLS

FLIGHT CONFIG

SPAWN COLD & DARK

In Prepar3d or FSX, you will generally spawn with your engines running. A "cold & dark" start-up means that your aircraft is in an unpowered state with engines and every other system off. Here is the procedure to spawn in such a state:

- 1. Spawn like you normally would at Gate B22 in CYYZ (departure airport) in the MJC8Q400
- 2. Set cockpit in cold & dark state

Q400

ART

PRE-ST

PLAN &

FLIGH

m

ART

Δ

- a) Engage Parking Brake lever (AFT = ENGAGED)
- b) Set GEN1, GEN2, BUS FAULT RESET, and EXT PWR switches to OFF
- c) Set STBY BATT, AUX BATT, MAIN BATT and BATTERY MASTER switches to OFF (in that order)
- d) Set MAIN BUS TIE to TIE

Q400 ART L S PRE. 8 7 1 ٦ ┝ Т L m 4

LOAD FUEL, CARGO & PASSENGERS

We will dynamically set our fuel, cargo and passenger loads using the Majestic Control Panel.

- MJC8 Q400 3. Open the control panel (mic74cpsan.exe file)
 - a) Open "mjc84cspan.exe"
 - b) Go in "Weight & Balance" tab
- 4. Set fuel loads (we will use 8000 lbs takeoff fuel and 5100 trip fuel, leaving us 1900 lbs extra fuel)
- 5. Set baggage weight (2000 lbs for this flight)
- 6. Set number of passengers (58 in our case) through the PAX sections and make sure that the TOM, LM and ZFM are within the Trim Envelope

7. Click "Calculate"

- Verify that the Takeoff Mass, Landing Mass and 8. Zero Fuel Mass are all under their respective MAX limits as shown on the graph.
- 9. Once Weight and Balance configuration is deemed correct, click on "Send Data to Flightsim" to set the loads on the aircraft.

5

4

C:\Program Files\Lockheed Martin\Prepar3D v4\SimObjects\Airplanes\mjc8q400\cpan

Pictures

POWER UP AIRCRAFT

- 10. On Overhead panel, turn on battery power
 - a) Set BATTERY MASTER, MAIN BATT, AUX BATT and STBY BATT switches to ON (in that order)
 - b) Set Main Bus Tie to TIE
 - c) Press Master Warning and Master Caution lights to reset them Note: the aircraft will begin a series of Automatic BITs (built-in tests).
- 11. OPTIONAL: Go on MCDU main menu to connect ground power unit
 - (GPU) to the aircraft
 - a) Power up FMC by pressing and holding the "DIM ON/OFF" button on the MCDU.
 - b) Wait for FMC BIT to complete
 - c) Click on the "ACCEPT" LSK (Line Select Key) once the INIT page is displayed
 - d) Press the MCDU "DATA" button
 - e) Click on the "SERVICES" LSK to enter ground crew services page.
 - f) Click on the "GPU REQUEST" LSK to set ground power. The MCDU will then display "CANCEL" when GPU is set.
- **12. OPTIONAL**: On overhead panel, click on the "EXT PWR" switch to power connect aircraft to GPU
- **13. OPTIONAL**: On Electrical Systems page, confirm that the "DC EXT PWR ON" indication is illuminated
- NOTE: Steps 11 to through 13 are optional.

10b

Note: In real life, when using external power, the pilot switches the battery switches OFF after switching to the external battery source. This helps protect batteries from depleting while the ground power unit is in use, or from GPU surges, or in the case of a weak GPU which will make the batteries "discharge" into the GPU. For simplicity's sake, we will simply leave the batteries ON.

Ż 1 V ш Δ Š 7 1 U ш. m 4

POWER UP AIRCRAFT

Fun fact: the engines of the Q400 can be started either with the APU (Auxiliary Power Unit) or with an external electrical power source like a GPU (Ground Power Unit). The aircraft startup procedures vary from company to company. There is a debate as to whether you should use the GPU or not.

The APU of the Dash 8 Q400 are considered by some to be fragile and unreliable. It supplies electrical power and bleed air, while the GPU provides electrical power only. Why would we need to use a GPU then? Well, a reason for using the GPU when the APU is running is to lessen on the load on the APU. Certain Canadian airlines will use the APU for air conditioning and the GPU for electrical power during the engine start. The Q400 uses electrical starter generators instead of a pneumatic starter, meaning the engines can start with electric motors cranking the engines instead of a starter powered by APU bleed air like standard airliners like the Airbus A320 or the Boeing 737.

Therefore, for simplicity's sake, we will use both the GPU and the APU in our tutorial, even if real life procedures are a bit different. Keep in mind that this tutorial is done within the scope of a simulation and should not be used for real life operation of the aircraft.

PRE-START Š PLAN FLIGH M ART

CHECK LANDING GEAR PINS

14. Go on MCDU "DATA -> SERVICES -> EXITS" menu to open doors to communicate with ground crew personnel

- a) In DATA -> SERVICES page, click "EXITS" LSK
- b) Click on the LSKs next to FWD PAX, AFT PAX, AFT BAG, and SERVICE doors to open them (or use the "LSHIFT + E" key binding)
- c) Doors will now be open

15. Click on "RETURN" to go back to the "SERVICES" page16. Make sure the landing gear pins are removed

- a) If the GEAR PINS option shows "GND OPS ONLY", this means that either the parking brake is not set or that doors are not open
- b) If the GEAR PINS option shows "INSTALL", this means that the landing gear pins are removed and are stored in the bag with red flags behind the copilot's seat. Your landing gears will now deploy or retract normally. In that case, you can proceed to the next page
- c) If the GEAR PINS option shows "STOW", this means that the landing gear pins are still installed (notice the empty bag behind the copilot's seat). Your landing gears will remain locked in their current position no matter what you do with the landing gear lever. In that case, you should click on the LSK next to "STOW" to stow the landing gear pins.

16a

AHRS & IRS ALIGNMENT

- 17. The AHRS (Attitude & Heading Reference System, which drives the flight instruments) alignment starts immediately when the battery switches are ON. The alignment phase is on-going when the ATT/HDG ALIGN light illuminates and lasts between 45 sec and 2 minutes.
- 18. The positional information of the navigation systems are provided by GPS and/or VOR-based RNAV, which do not require any alignment. The IRS, on the other hand, acts as a short time supplement to the GPS in this aircraft. If you see the "GPS INTEG" caution on the PFD (Primary Flight Display), this means that the FMC is not turned on.
- 19. Make sure the IRS (Inertial Reference System) switch is set to NAV. If it's not, set it to OFF for 5-10 sec, then set it back to NAV to restart IRS alignment. You can monitor the alignment process in the second DATA page of the FMC by pressing the DATA button two times.

IGNING

700%

17d

19

Alignment

FMC SETUP – FLIGHT PLAN

- 17. Initialize the FMC (Flight Management Computer) if you have not done it already
 - a) Power up FMC by pressing and holding the "DIM ON/OFF" button on the MCDU.
 - b) Wait for FMC BIT (Built-In Test) to complete
 - c) Click on the "ACCEPT" LSK (Line Select Key) once the INIT page is displayed
- 18. Go on FMC (Flight Management Computer) and initialize your flight plan
 - a) Press the FPL page button
 - b) Type "CYYZ" (Pearson Airport) on the MCDU keypad and press "ENTER".
 - c) Click LSK next to "ACCEPT" on the confirmation screen to validate entry.
 - d) Type "CYUL" (Trudeau Airport) on the MCDU keypad and press "ENTER".
 - e) Click LSK next to "ACCEPT" on the confirmation screen to validate entry.

Q400

FMC SETUP – FLIGHT PLAN (DEPARTURE)

- 19. Go on FMC (Flight Management Computer) and set up your departure parameters
 - a) Press the FPL page button
 - b) Press the MENU page button
 - Select LSK next to "DEPART" to enter Departure subc) menu

000

d) Type desired runway selection number (runway 05 in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER"

EPL

3

LIST

19c

DTO

Q400

FMC SETUP – FLIGHT PLAN (DEPARTURE)

- 20. Go on FMC (Flight Management Computer) and set up your departure parameters for the SID (Standard Instrument Departure)
 - a) Type desired SID selection number (DEDKI4 in our case, so we type "6" since it is selection item number 6) on the MCDU keypad and press "ENTER"
 - b) Type desired SID transition selection number (Runway 05 in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER"
 - c) All departure data is now entered in the FMC.
 - d) You can click on the FPL page button to verify new entries.

FMC SETUP – FLIGHT PLAN (ARRIVAL)

- 21. Go on FMC (Flight Management Computer) and set up your arrival parameters
 - a) Press the FPL page button
 - b) Press the MENU page button
 - c) Select LSK next to "ARRIVE" to enter Arrival sub-menu
 - d) Type desired runway selection number (runway 06 Left in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER"

JEPPESEN

MONTREAL QUE

FMC SETUP – FLIGHT PLAN (ARRIVAL)

- 22. Go on FMC (Flight Management Computer) and set up your arrival parameters for the STAR (Standard Terminal Arrival Route)
 - a) Type desired STAR selection number (HABBS3 in our case, so we type "2" since it is selection item number 2) on the MCDU keypad and press "ENTER"
 - b) Type desired STAR transition selection number (MIGLO VOR waypoint in our case, so we type "3" since it is selection item number 3) on the MCDU keypad and press "ENTER". In other words, we will enter the STAR from the MIGLO transition point.
 - c) Type desired approach selection number (IO6L ILS in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER".
 - d) All arrival data is now entered in the FMC.

REEDO

RWYS 06L/R, 10

At or below FL330

e) You can click on the FPL page button to verify new entries.

-WATERTOWN

109.8 ART

HABBS RWYS 06L/R, 10

At or below 9000'

RWYS 24L/R, 28 At or below

16000

22d JEPPESEN MONTREAL, QUE 24 FEB 17 RNAV STAR (10-2B) RNAV 1 - D/D/I or GNSS required 2. Safe altitude within 100 NM 7400'. Rwys 24L/R, 28: For non GNSS equipped aircraft, YJN DME must be operational HABBS 3 ARRIVAL (HABBS.HABBS3) TIDA MAX 220 KT Between 4000' & 2300' SLOKA VEVKU At or below 9000' (FACF) At or above 3000' RNAV (GNSS) RWY 28 GAUTI 16.0 ΙΟΥΑΤ At or below RUDŠU 9000' MAX 220 KT (FACF) FULFO (FACF Between 4000' & 1900' XUITA At or above At or above 3000' 3000' CANADA UNITED STATES

000

FMC SETUP – FLIGHT PLAN (COMPLETE ROUTE)

- 23. Go on FMC (Flight Management Computer) and set up your remaining waypoints and airways
 - a) Press the FPL page button and click NEXT button to show page 2
 - b) Click on LSK next to the next waypoint after DEDKI to select it (it should be a discontinuity reading "NO LINK" in flashing amber).
 - c) Press the LIST button

Q400

4

L S

Δ

QQ

Ζ

PLA

HDI

ш.

m

PA

- d) Click on LSK next to the AIRWAYS sub-menu
- e) Type desired airway selection number from DEDKI waypoint (airway Q913 in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER"
- f) Type desired next waypoint selection number after DEDKI (IGSEB VOR waypoint in our case, so we type "1" since it is selection item number 1) on the MCDU keypad and press "ENTER".
- g) IGSEB waypoint has now been added after DEDKI and will be accessible through airway Q913
- h) We will now have to check for discontinuities

CYYZ SID DEDKI Q913 IGSEB DCT MIGLO STAR CYUL

FMC SETUP – FLIGHT PLAN (CLEAN UP DISCONTINUITIES)

- 24. Go on FMC (Flight Management Computer) and remove remaining discontinuities from the flight plan
 - a) Click on LSK next to the next "NO LINK" waypoint (in our case after IGSEB).
 - b) Click on LSK next to "DELETE" two times to delete discontinuity between IGSEB and MIGLO.
 - Click on NEXT button until you reach page 4 of the FPL menu. c)
 - d) Click on LSK next to the next "NO LINK" waypoint (in our case after XULTA).
 - e) Click on LSK next to "DELETE" two times to delete discontinuity between XULTA and the IO6L approach fix.
 - Most discontinuities should now be removed. You can cycle f) through waypoints by pressing the "FORMAT" button while being in the FPL page and pressing "NEXT" or "PREV" to cycle through waypoints on the MFD. Press the "FORMAT" button again to return to the normal navigation display.

INFO

OVEL

"NO LINK"

DELETED!

4 L S PRE. Š 7 1 FLIGH m 4 0

FMC SETUP – FUEL & WEIGHT

- 25. Check the MJC8 Q400 control panel and find your resulting Zero Fuel Mass (ZFM)
 - a) Open "mjc84cspan.exe"
 - b) Go in "Weight & Balance" tab
 - Zero Fuel Weight/Mass is 53502 lbs c)
 - d) Our total fuel is 8000 lbs
- 26. Enter Fuel & Weight information in FMC (Flight Management Computer)
 - a) Press the FUEL page button. You will see a BASIC WT entry that is erroneous. Let's fix this.
 - Press LSK next to ZFW, type "53502" ZFW value we b) obtained from the control panel and press ENTER.
 - c) Press LSK next to FUEL ONBOARD, type "8000" total fuel value we obtained from the control panel and press ENTER.
 - d) The Gross Weight will automatically be calculated based on the two values we entered previously. We're good to go!

FMC SETUP - CROSS-FILL

27. Initialize the second FMC (Flight Management Computer) on the First Officer's side

- a) Power up FMC by pressing and holding the "DIM ON/OFF" button on the MCDU.
- b) Wait for FMC BIT (Built-In Test) to complete
- c) Click on the "ACCEPT" LSK (Line Select Key) once the INIT page is displayed
- d) Press the DATA button to open up the Data page
- e) Press the LSK next to the XFILL sub-menu
- f) Press the LSK next to the XFILL FLIGHT PLAN sub-menu to start transfer the flight information from the captain's FMC to the first officer's FMC
- g) Wait for the CROSSFILL RECEIVE IN PROGRESS to complete
- h) Press the LSK next to the XFILL FUEL submenu to start transfer the fuel information from the captain's FMC to the first officer's FMC
- i) Wait for the CROSSFILL RECEIVE IN PROGRESS to complete

ARCDU – UHF RADIO

- 28. Set ARCDU (Audio & Radio Control Display Unit) radio frequencies to CYYZ (Toronto) and CYUL (Montreal) airport ATIS (Automatic Terminal Information Service) in order to gather meteo conditions and atmospheric pressure
 - a) Power up ARCDU by setting radio power switch to ON.
 - b) Press the LSK next to UHF1 to select frequency 1. Frequency 1 will be highlighted in white.
 - c) Scroll mousewheel over TUNE knob to tune UHF1 radio frequency 1 to the Toronto ATIS (120.825 MHz).
 - d) Press LSK next to UHF1 to validate frequency 1.
 - Repeat steps b) to d) to set UHF1 frequency 2 to the Montreal ATIS (133.700). e)
 - Press LSK next to UHF1 to cycle active frequency (in green) to CYYZ ATIS (120.825). f)
 - Write down the altimeter setting broadcast by Toronto ATIS. In our case, altimeter g) setting is 29.52 in Hg (inches of mercury).
 - h) Set COM1 radio switch to ON

CYYZ/YYZ Apt Elev 569'

28f	-TRIPS	18.0	Sinto al	
201				
		34.0		2 5
	- the b	-3%		C CA
R		SA. KO	5%	
	4	1	26	B

CYUL/YUL	ITL	26 AUG 16 (1)	Pesen 1) ILS DM	E or LC	MONT	REAL, QUE E Rwy 06L
D-ATIS 133.7 (Free	nch 127.5)	QUEBEC Ra 123.5	adio 5	118.9	ONTREAL Ar 126.9	132.85
119.3	MONTREAL Tower 119.9	124.3	12	Grou	nd 12	21.9
LOC IUL 109.3	Final Apch Crs 057°	GS BIRPO 1210'(1112')	ILS DA(H) 298 '(200')	Apt Elev TDZE	118′ 98 ′ /	3300' 2900'
мıssed арсн: 3000' headi	Climb to 700 ng 358°. LEF)' heading 057 T turn direct	7°. Climbing to YUL VOR.	LEFT turn	to	090° - 270
Alt Set: INCHES 1. Radar or RNA only within 10°	AV required. 2. either side of cer	Trans level: FL SAFE ALTITUDE W Interline, 4. Proced	180 /ITHIN 100 NM 740 ure turn NOT AUT	Trans alt: 00'. 3. LOC r HORIZED.	18000' eliable	MSA YUL VOR

Toronto airport information India, 1447 zulu. Wind 311 at 10 . Visibility: greater than 20 miles. Sky condition: few clouds at 2,700. Temperature: 16. Dewpoint: 11. Altimeter 2952. ILS runway 24L, ILS runway 24R and ILS runway 23 in use. Landing and departing runway 24k.;;;;

ARCDU – RADIO NAV

- 29. Set ARCDU (Audio & Radio Control Display Unit) ILS frequency to CYUL (Montreal) airport ILS frequency
 - a) Press the « FPL » button to enter the Flight Plan page
 - b) Press the « MENU » button to enter the FPL MENU
 - c) Click the LSK next to « APPR PLAN ».
 - d) ILS frequency for Montreal runway 06L is 109.30 MHz.
 - e) Link ARCDU to FMS (Flight Management System) by setting radio power switch to FMS.
 - f) Press the LSK next to VOR1 to select frequency 1. Frequency 1 will be highlighted in white.
 - g) Scroll mousewheel over TUNE knob to tune VOR1 radio frequency 1 to the Montreal ILS (109.30 MHz).
 - h) Press LSK next to VOR1 to validate frequency 1. Frequency will now read "ILS1" instead of "VOR1".
 - i) Repeat steps f) to h) to set VOR2 frequency 1 to the Montreal ILS (109.30 MHz) to make sure both FMCs track the same ILS frequency.

29h

	CYUL/YUL	NTL	26 AUG 16 (1	esen •) ILS DM	E or LO	Mont C DM	REAL, QUE E Rwy 06L
	D-ATIS		QUEBEC Rad	lio	MC	NTREAL A	rrival
	133.7 (Fre	MONTREAL Tower	123.55		Groun	126.9	132.85
	119.3	119.9	124.3	12	1.0	- 13	21.9
STRIP TM	LOC IUL 109.3	Final Apch Crs 057°	GS BIRPO 1210'(1112')	ILS DA(H) 298 ′(200')	Apt Elev TDZE	118′ 98 ′	3300' 2900'
RIFING	мıssed арсн: 3000' headi	Climb to 700 ng 358°. LEF)' heading 057 T turn direct t	°. Climbing o YUL VOR.	LEFT turn	to	090°
8	Alt Set: INCHES 1. Radar or RNA only within 10°	AV required. 2. either side of ce	Trans level: FL SAFE ALTITUDE WI	180 THIN 100 NM 740 Ire turn NOT AUT	Trans alt: 1)0'. 3. LOC re HORIZED	8000' liable4	MSA YUL VOR

CABIN PRESSURE & ALTIMETER SETTING

- 30. Set altimeter barometric setting on the PFD (Primary Flight Display) to 29.52 in Hg, as stated by the Toronto ATIS.
- 31. Set standby ADI (Attitude Director Indication) barometric setting to 29.52 in Hg, as stated by the Toronto ATIS.
- 32. Set landing cabin pressure altitude setting to approx. 100 ft (CYUL airport elevation is 118 ft). Take note that the gauge is in thousands of feet.

DH

200 DH

30

HDG 360°

O- VOR

0

30

PUSH TO STD

0

0

Q400 ART **L**S PRE ø Ζ ٢ Ţ FLIGHT M ART Δ

WEATHER RADAR TEST

- 33. Power up and test Weather radar
 - a) Press the WX/TERR button to toggle between TERRAIN MAP (EGPWS, or Enhanced Ground Proximity Warning System) and WEATHER RADAR display
 - b) Set weather radar mode to WX
 - c) Set weather radar switch to TEST
 - d) Check that WX TEST occurs correctly
 - e) Set weather radar switch to ON
 - f) Confirm that WEATHER RADAR display shows WX ON
 - g) Press WX/TERR button back to TERRAIN MAP

33e

TCAS TEST

- 34. Power up and test TCAS (Traffic & Collision Avoidance System)
 - a) Click the LSK next to ATC1 on the ARCDU to select TCAS menu
 - b) ATC1 transponder frequency will be highlighted in white when selected
 - c) Click on the EXP button to expand TCAS menu
 - d) Press the LSK next to the TEST option to start TCAS BIT (Built-In Test)
 - e) Wait for the BIT to complete

Q400

ART

PRE-ST

Š

Z

PLA

FLIGHT

M

ART

Δ

- f) Confirm that TEST OK appears on navigation display
- g) Click and hold LSK next to ATC1 to set TCAS mode to TA ONLY (Traffic Advisory Only)
- h) Confirm that TA ONLY is in AUTO mode. If not, press the TCAS power button.
- i) To return ARCDU to main page, click on PG 1/2 button.

ART

L S

Ē

۵

Ø

7

1

ב

Т

L

m

4

V-SPEEDS SETTING

35. Find V-Speeds

- a) Press FUEL button on the MCDU to find our Gross Weight: 61502 lbs
- b) The airport altitude at CYYZ (Toronto) is 173 m, or 567 ft
- c) Find VR, V2, VFRI & VCLIMB for a Flaps 5 takeoff for 62000 lbs and 2000 ft to be conservative. V1 is assumed equal to VR.
- d) V₁: 131 kts
- <u>V_R: 131</u> kts e)
- V₂: 132 kts
- V_{FRI}: 162 kts (142 + 20 kts) g)
 - Flaps Retraction Initiation Speed. Table gives us 142 kts, but since we have possible snow and icing conditions above 1000 ft, we will increase that value by 20 kts since Bombardier requires to have the INCR REF SPEEDS switch to ON, which increases the stall warning speed by 20 kts and provides us a safe margin.
- h) <u>V_{CLIMB}: 174 kts</u> (154 + 20 kts)

Final Takeoff Speed. Table gives us 154 kts, but we will increase that value by 20 kts for the same reason as mentioned above.

- To set V-Speeds, press the SEL button to select V1 (highlighted) i) and scroll mousewheel on SPEED BUG knob to set its value.
- i) Repeat previous step for VR, V2, VFRI (full triangle) and VCLIMB (empty triangle).
- k) V-Speed selector will automatically be unselected.
- 36. Set DH/MDA switch (Decision Height / Mean Descent Altitude) to MDA and scroll mousewheel on knob to set acceleration altitude to the airport elevation + 1000 ft (567 ft + 1000 ft = 1567 ft) rounded up to 1570 ft.

V1 is the Decision Speed (minimum airspeed in the takeoff, following a failure of the critical engine at VEF, at which the pilot can continue the takeoff with only the remaining engines), VR is the rotation speed (airspeed at which the pilot initiates rotation to obtain the scheduled takeoff performance), and V2 is Takeoff Safety Speed (minimum safe airspeed in the second segment of a climb following an engine failure at 35 ft AGL).

WEIGH

ALTITU

39.500

44.000

48.500

53.000

57.000

62.000

DME1 1.8 NM

MJC8 Q400 TAKEOFF SPEEDS CARD

- Look up the Vr/V2 from the appropriate Vr/V2 table below. Assume V1=Vr
- In Vr exceeds V2 , assume V2 = Vr If icing protection is ON above 500 ft AGL, add
- 20 kts to V2
- For wet runway reduce V1 by 8kts 0.1kts for each kt headwind, or 8 kts + 0.3kts for each kt tailwind
- 5. Check Vr not below 108kts for Flaps 5, 104kts for Flaps 10, 100 kts for Flaps 15
- Check V1 not below 97 kts for Flaps 5, 96 kts for Flaps 10 and Flaps 15

	FLAPS 5° Vr/V2											
		AT	OR BELOV	V20°C 0	AT				ABOVE 20	0°C OAT		
T/ DE	0	2000	4000	6000	8000	10000	0	2000	4000	6000	8 35	5C 00
LB	102/116	102/115	102/114	102/113	102/112	103/111	102/114	102/113	102/112	103/111	103/110	105/109
LB	105/115	106/114	107/113	107/112	108/112	110/111	107/113	108/112	108/112	110/111	110/111	112/111
LB	112/117	113/117	113/117	114/117	115/117	116/117	113/117	114/117	115/117	116/117	117/117	118/117
LB	118/122	119/122	120/122	120/122	121/122	122/122	120/122	120/122	121/122	122/122	123/122	124/122
LB	124/127	125/127	126/127	12	127	128/127	126/127	126/127	127/127	128/127	129/127	130/127
LB	130/132	131/132	1/102	13, 35	132 I	134/132	131/132	132/132	133/132	134/132	135/132	136/132

VCLMB

MDA

36

64.000 LB 133/135 134/135 135/135 136/135 137/135 138/135 135/135 136/135 137/135 138/135 140/135 30 580 35i V1 30 VR 29.52 IN V2 29.52 IN HDG 360° ILS1 360° 109.30 VFRI 1.8 NM HDG 360° ILS1 360 0 36 109.30 1.8 NM

O- ARE:

DME2 1.8 NM

Flap CLMB

107 130

115 137

120 143

125 148

36

1570 ft

15°

Flap Retraction Initiation Speed (VFRI)

116

126

132

137 128

V FRI V FRI V FRI

Flap

110

118

142 134 130 154 140 137 133 148

123

Final Takeoff Speed (V CLMB)

WEIGHT

39.500 LB

44.000 LB

48.500 LB

53.000 LB

57.000 LB

62.000 LB

64.000 LB

FLAPS 5° Vr/V2

	AT OR BELOW 20° C OAT						ABOVE 20° C OAT					
WEIGHT/ ALTITUDE	0	2000	4000	6000	8000	10000	0	2000	4000	6000	8000	10000
39.500 LB	102/116	102/115	102/114	102/113	102/112	103/111	102/114	102/113	102/112	103/111	103/110	105/109
44.000 LB	105/115	106/114	107/113	107/112	108/112	110/111	107/113	108/112	108/112	110/111	110/111	112/111
48.500 LB	112/117	113/117	113/117	114/117	115/117	116/117	113/117	114/117	115/117	116/117	117/117	118/117
53.000 LB	118/122	119/122	120/122	120/122	121/122	122/122	120/122	120/122	121/122	122/122	123/122	124/122
57.000 LB	124/127	125/127	126/127	126/127	127/127	128/127	126/127	126/127	127/127	128/127	129/127	130/127
62.000 LB	130/132	131/132	131/132	132/132	133/132	134/132	131/132	132/132	133/132	134/132	135/132	136/132
64.000 LB	133/135	134/135	135/135	136/135	137/135	138/135	135/135	136/135	137/135	138/135	138/135	140/135

FLAPS 10° Vr/V2

	AT OR BELOW 20° C OAT							ABOVE 20° C OAT				
WEIGHT/ ALTITUDE	0	2000	4000	6000	8000	10000	0	2000	4000	6000	8000	10000
39.500 LB	100/111	100/110	100/110	100/109	100/108	100/107	100/109	100/109	100/109	100/107	/106	/105
44.000 LB	100/110	100/109	100/109	100/108	100/107	101/106	100/108	100/108	100/107	100/106	/105	/105
48.500 LB	103/109	105/109	105/108	105/108	106/108	108/108	104/108	106/108	106/108	106/108	/108	/108
53.000 LB	109/113	110/113	111/113	111/113	112/113	113/113	110/113	111/113	112/113	112/113	/113	/113
57.000 LB	115/118	116/118	116/118	117/118	118/118	119/118	116/118	117/118	117/118	118/118	/118	/118
62.000 LB	120/122	121/122	122/122	122/122	123/122	124/122	121/122	122/122	123/122	123/122	/122	/122
64.000 LB	124/125	125/125	125/125	126/125	127/125	128/125	125/125	125/125	126/125	127/125	/125	/125

FLAPS 15° Vr/V2

	AT OR BELOW 20° C OAT						ABOVE 20° C OAT					
WEIGHT/ ALTITUDE	0	2000	4000	6000	8000	10000	0	2000	4000	6000	8000	10000
39.500 LB	98/106	98/106	987/105	98/104	98/103	98/102	98/105	98/104	98/103	98/102	98/102	98/102
44.000 LB	98/105	98/105	98/104	98/103	98/102	98/102	98/103	98/103	98/102	98/102	99/102	99/102
48.500 LB	100/104	101/104	101/104	102/104	103/104	104/104	101/104	102/104	103/104	104/104	104/104	104/104
53.000 LB	106/109	106/109	107/109	108/109	108/109	109/109	107/109	108/109	108/109	109/109	110/109	110/109
57.000 LB	111/113	112/113	112/113	113/113	114/113	114/113	112/113	113/113	114/113	114/113	115/113	115/113
62.000 LB	116/118	117/118	117/118	118/118	118/118	119/118	117/118	118/118	119/118	119/118	120/118	120/118
64.000 LB	119/120	120/120	120/120	121/120	122/120	122/120	120/120	121/120	121/120	122/120	123/120	123/120

- Look up the Vr/V2 from the appropriate Vr/V2 1. table below. Assume V1=Vr
- 2. In Vr exceeds V2 , assume V2 = Vr
- If icing protection is ON above 500 ft AGL, add 3. 20 kts to V2
- 4. For wet runway reduce V1 by 8kts 0.1kts for each kt headwind, or 8 kts + 0.3kts for each kt tailwind
- 5. Check Vr not below 108kts for Flaps 5, 104kts for Flaps 10, 100 kts for Flaps 15
- 6. Check V1 not below 97 kts for Flaps 5, 96 kts for Flaps 10 and Flaps 15

0		
V app	V ref	Ve
115		10
120		11
126		11
131		12
137		12
142		13
146		13
	Vapp 115 120 126 131 137 142 146	Vapp Vref 115 120 126 131 137 142 146

Flap Retraction Initiation Speed (VFRI) Final Takeoff Speed (V CLMB)

AJESTIC

When flyin Above 400 Add 20 kts	WEIGHT	V FRI Flap 5°	V FRI Flap 10°	V FRI Flap 15°	V CLMB
to√ to√	39.500 LB	116	110	107	130
CLV CLV	44.000 LB	120	112	109	131
1B dd 2	48.500 LB	126	118	115	137
0 kts	53.000 LB	132	123	120	143
to Its	57.000 LB	137	128	125	148
/ FRI	62.000 LB	142	134	130	154
	64.000 LB	146	137	133	158

FLAPS 10°

WEIGHT	V app	V ref	Vga
39.500 LB	109	108	108
44.000 LB	112	112	108
48.500 LB	117	117	108
53.000 LB	122	122	112
57.000 LB	127	127	117
62.000 LB	132	132	122
64.000 LB	136	136	125

F	LA	PS	15°	

WEIGHT	V app	V ref	V ga
39.500 LB	106	105	105
44.000 LB	106	106	105
48.500 LB	112	112	105
53.000 LB	117	117	107
57.000 LB	122	121	111
62.000 LB	126	126	116
64.000 LB	129	129	119

FLAPS 35°

WEIGHT	V app	V ref	V ga
39.500 LB		101	
44.000 LB		102	
48.500 LB		107	
53.000 LB		112	
57.000 LB		116	
62.000 LB		120	
64.000 LB		123	

* When flying in icing conditions, Add 20 kts to V app, V ref, V ga for flaps 10°, 15° and 35°

These speed tables are available on the Majestic Software website: http://majesticsoftware.com/mjc8q400/downloads.html

Q400

ART

L S PRE.

Š Ζ 1

Т

FLIGH

M

ART

Δ

TRIM SETTING & AUTOPILOT SETUP

- 37. Set elevator trim in the middle of the TO (Takeoff) white line as shown.
- 38. Press the YD (Yaw Damper) button to set it to ON
- 39. Make sure the HSI (Horizontal Situation Indicator) SELECT button has the arrow pointing to the pilot's seat (left).
- 40. Rotate the NAV SOURCE knob to make sure the navigation systems source is the FMS1 (pilot's Flight Management System)
- 41. Click on the TAKEOFF/GO AROUND button on the throttles to arm the Go Around (GA) autopilot mode
- 42. Rotate the ALT knob and set the autopilot altitude target to 3000 ft
 - <u>Note</u>: Canadian law restricts our speed below 3000 ft to 200kts
- 43. Press the ALT SEL button to arm the altitude select autopilot mode
- 44. Press the HDG (Heading) button to arm the heading autopilot mode
- 45. Rotate the HDG knob and set the autopilot heading target to 057 (CYYZ runway 05 heading is 057 according to Jeppesen chart)

1000

17

D- ADF2

DME2 1.8 NM

40

IDG 057

O- VOR1

DME1 1.8 NM

in sumi

DOORS

- 46. Verify that all doors are closed
 - a) Press the DOORS SYS page
 - b) Look for any door that is open (red)
- 47. Close any door that is still open by going on MCDU "DATA -> SERVICES -> EXITS" menu
 - a) In DATA -> SERVICES page, click "EXITS" LSK
 - b) Click on the LSKs next to FWD PAX, AFT PAX, AFT BAG, or SERVICE doors to close them if required (or use the "LSHIFT + E" key binding)
 - c) All doors should be in green (closed)

46a

ART **PRE-ST** Š PLAN FLIGHT M ART Δ

Q400

APU (AUXILIARY POWER UNIT) START

- 1. On Overhead Panel, press on the APU PWR switch. Wait 5-6 seconds for the BIT (Built-In Test) to complete after the switchlights have flashed.
- 2. Press the APU START switch. The "START" indication will illuminate while the start sequence is active and extinguish once it is complete. The APU PWR switch will then display "RUN".
- 3. Once APU start cycle is finished, press the GEN switch to turn the APU generator ON. The "WARN" indication appears since we are running on the Ground Power Unit. Don't worry, it's normal. In case the GPU fails, the power will be provided by the APU automatically.
- 4. Press the APU BL AIR (Bleed Air) pushbutton
- Look on the Electrical Systems page and make sure that the APU/External Power is producing sufficient voltage (at least 24.5 volts)

AUTOFEATHER TEST

- 6. Press the AUTOFEATHER button to select autofeather test.
- 7. The AUTOFEATHER BIT (Built-In Test) will be complete once the "A/F TEST PASSED" caution appears on the engine page.
- 8. Once test is complete, press the AUTOFEATHER button to set it to OFF. We will use autofeather only when the engines are running.

ENGINE START-UP

- 9. Set Control Lock lever aft after FLIGHT IDLE.
 10. Set both throttles to DISC
- 11. Set GEN 1 and GEN 2 switches ON on both the DC CONTROL and the AC CONTROL panel.
- 12. Set both Ignition switches to NORM
- 13. Set Engine Start SELECT switch to 2 (right engine)
- 14. Press the ENGINE START button
- 15. Once NH starts increasing, set Condition Lever #2 to START/FEATHER
- 16. Once NH is greater than 50 %, the starter will automatically disengage (you should hear a "click" of the Engine Start SELECT switch going back to the middle position).

11

11

16

PROCEDURE **START-UP** 4 PART

Q400

ENGINE START-UP

- 17. Repeat steps 13 through 16 to start left engine (#1).
- 18. You can monitor engine parameters on the Engine page too.
- 19. Set Condition Levers 1 and 2 to MAX/1020.
- 20. Once engines have stabilized, press the AUTOFEATHER button to arm the autofeathering system. You should see the A/F SELECT indication on the engine page.

such as the torque settings/requirements and angle of the power levers which would unlikely be met in

19

2

17

PROCEDURE **ART-UP** 5 4 ART

PROCEDURE P -**START** 4 ART Δ

Q400

ENGINE START-UP

- 21. Set TANK 1 and TANK 2 AUX PUMP switches ON22. Set STANDBY HYDRAULIC PRESSURE pump switch ON
- 23. Set PTU (Power Transfer Unit) CONTROL switch ON
- 24. Set MAIN BUS TIE switch OFF
- 25. Set EXT PWR switch to OFF to remove ground power
- 26. Remove Ground Power Unit
- 27. APU GEN indication should illuminate normally now

COMPLETE PRE-FLIGHT

- 28. Set De-Misters and Side Vent levers to OPEN (AFT) for both pilot and copilot's sides
- 29. Set RECIRC switch ON
- 30. Set engine BLEED switches 1 & 2 ON Note: Wait a few seconds before you set switch 2 to avoid a pressure bump
- 31. Set BLEED FLOW Controller switch MIN Note: you can keep it at NORM until you start your takeoff roll to make sure the passengers are comfortable during the taxi phase. The bleed flow is set to MIN on takeoff simply to maximize engine power available during takeoff.
- 32. Set PACK (Pneumatic Air Conditioning Kit) switches – AUTO
- 33. Set APU BLEED switch OFF
- 34. Set APU GEN switch OFF
- 35. Press APU PWR button to shut APU down. Make sure you let the APU cool off at least 1 minute after you set the BLEED and GEN switches to OFF before you shutdown the APU.

Q400 CEDURE

PRO

START

4

ART

Δ

COMPLETE PRE-FLIGHT

36. Set Position Lights - ON 37. Set Emergency Lights – ARM 38. Set Anti-collision lights – ON (WHT/ON STROBES) 39. Set Wing lights – ON 40. Set Landing lights – ON 41. Set TAXI lights - ON 42. Set FASTEN SEAT BELTS switch – ON 43. Set NO SMOKING switch – ON 44. Set Icing Protection systems based on icing level (see more in the ICE PROTECTION section). Since we are at LEVEL 2 (icing conditions exist), we will: a) Set PITOT HEAT switches – ON b) Set WINDSHIELD & WINDOW HEAT switch – ON / NORM c) Set PROP HEAT switch - ON d) Set Engine Intake Doors - OPEN e) Make sure the REF SPEEDS INCR switch is OFF ICING LEVEL 1: used in all conditions ICING LEVEL 2: used on ground when icing conditions exist, temperature + 10 deg C or below, in-flight + 5 deg C or below

ICING LEVEL 3: used in flight during visual accretion or ICE DETECTED is displayed on Engine Display

COMPLETE PRE-FLIGHT

- 45. Select Engine Rating NTOP (you could use RTOP for Reduce-Takeoff Power too but we will assume this is the first flight of the day)
 46. Set FLIGHT/TAXI spoilers switch – TAXI
 47. Set Flaps Lever to 5 deg for takeoff
- 48. Release Parking Brake

Q400

PROCEDURE

START-UP

4

PART

- 49. Press T/O Warning Test switch and make sure you hear no alarm sound. You will hear an alarm sound if:
 - Parking brake is set
 - Flaps still at 0 deg
 - Spoilers up with power levers more than Flight Idle + 12 deg angle
 - Trim not in white arc
 - Condition levers not at MAX

PUSHBACK

- 1. Set Nosewheel Steering switch OFF
- 2. Set Anti-Skid switch ON
- Make sure parking brake is released 3.
- 4. On FMC, press the DATA button, then click the LSK next to the SERVICES sub-menu.
- 5. Click the LSK next to "PUSHBACK STRAIGHT" to start pushback
- 6. Click the LSK next to "PUSHBACK END" to stop pushback about 100 m from your initial parking spot.
- 7. Set Nosewheel Steering switch ON
- 8. Push Control Lock Lever FORWARD

TAXI L PART

PART 5 – TAXI

Q400 L

 \mathbb{Z}

PUSHBACK

TAXI

The Q400 is steered on the ground by using a tiller.

However, in FSX or Prepar3d you cannot map a joystick axis to your nosewheel steering tiller: it's a limitation of the sim itself. In order to steer the aircraft, Majestic Software gives you options in the Control Panel (see section 4) as to how you want to use the tiller: you can either use your mouse to click and drag the tiller lever, or you can use your aileron controls while on the ground to act as an axis for tiller control. Both options are equally valid, so pick whichever suits you best.

Using rudder pedals to taxi will give you a range of about +/- 8 degrees of nosewheel deflection while taxiing.

Using the tiller to taxi will give you a range of about +/- 70 degrees of nosewheel deflection while taxiing. Nose Wheel Steering Tiller (used to steer aircraft on the ground)

	OUTPUT		INPUT	
AILERONS:	OUTPUT	POSITION:	32768 INPUT	SENSITIVITY: 1.0000 CENTER: 3276
RUDDER:	OUTPUT	POSITION:	32768 INPUT	SENSITIVITY: 1.0000 CENTER: 3276
TILLER:	UTPUT	POSITION:	0 INPUT	SENSITIVITY: 1.0000 CENTER: 3276
BRAKE LEFT:	OUTPUT	POSITION:	0 INPUT	ON: 65535 OFF: 1
BRAKE RIGHT:	OUTPUT	POSITION:	0 INPUT	ON: 65535 OFF: 1

RELOAD THE AIRCRAFT TO ACTIVATE THE CHANGES

RUDDER INPUT Nosewheel range: +/- 8 deg

TAXI

• Our Flight Number for today will be ACA119 and we spawned at gate B22.

Q400

AXI

S

- After we performed pushback from gate B22, we would typically contact the tower for guidance by saying « ACA119, requesting taxi. »
- The tower would then grant you taxi clearance by saying « ACA119, taxi to holding position H6 Runway 05 via taxiways 3, Alpha-Juliet (AJ), Alpha (A), November (N), Echo (E), Golf (G), Hotel (H).
- This means that we will follow the A line, then turn left to the N line, then follow G and H line until holding point H6... and then hold there until we get our clearance for takeoff.
- Throttle up until you see the « PROPELLER GROUND RANGE » lights 1 and 2, which means that the propellers for engines 1 and 2 are in the Ground « BETA » Range or power setting. The FADEC (Full Authority Digital Engine Control) will control your propeller speed to 660 RPM.

TAKEOFF

- 1. Line up on the runway
- 2. Set FLIGHT/TAXI spoilers switch FLIGHT
- 3. Set Terrain/Radar display to either TERRAIN for mountain areas or to WEATHER RADAR for storms. In our case, we will use the weather radar.
- Check that parking brake is off, condition levers are at MAX and flaps lever is at 5 deg (takeoff configuration)

TAKEOFF

- 5. Hold brakes.
- Throttle up until engines stabilize to 90 % 6. torque
- 7. Release brakes and start your takeoff roll
- Rotate smoothly and continuously when 8. reaching VR (131 kts) until reaching 15 degrees of pitch angle
- 9. Maintain 15 deg of pitch until 1000 ft AGL 10. Follow the Flight Director (pink lines)
- 11. Raise landing gear by left-clicking the landing gear lever

- 1. Set BLEED FLOW switch NORM
- Set AUTOFEATHER switch OFF 2.
- When climbing, set Condition Levers to 900 RPM 3.
- Press the MCL button to set CLIMB engine power rating 4.
- STBY HYD PRESS switch OFF 5.
- 6. PTU (Power Transfer Unit) switch - OFF
- 7. AUX PUMP switches OFF
- Scroll mousewheel on HDG (Heading) knob to make 8. sure the cyan line reference is always lined up with the current segment on the navigation display
- 9. TAXI lights OFF

Q400

CRUISE

Š

CLIMB

AKEOFF,

6

ART

Δ

- 10. Once we are 1000 ft above airport elevation, we hit our acceleration altitude (denoted by the MDA line on our altimeter). We can lower the nose and accelerate for climb.
- 11. Set REF SPEED INCR switch to ON when reaching 1000 ft above airport elevation since we are in icing conditions
- 12. Climb by maintaining a speed of 185 kts, which provides the best speed/climb rate balance while protecting the flaps 5 limit speed of 200 kts.
- 13. Set flaps lever to 0 when you fly above VFRI (Flaps retraction initiation speed)

- 14. Once you have reached ALKUT at 3000 ft, begin our main climb segment
- 15. Set throttles at RATING detent
- 16. Scroll mousewheel on ALT setter to set 24000 ft for our cruise altitude target
- 17. Press ALT SEL to arm altitude target autopilot mode
- 18. Press the NAV button to arm the LNAV (Lateral Navigation) autopilot mode
- 19. Press the IAS button to arm the INDICATED AIRSPEED autopilot mode
- 20. Scroll mousewheel over the autopilot pitch control to modify IAS target value to 185 kts
- 21. Press the AP button to engage autopilot
- 22. You can increase or decrease climb rate by either throttling back a bit or by using the autopilot VS (Vertical Speed) mode. I prefer to leave my throttle at the RATING detent to maximize climb rate.

18

21

15

- 23. At 10,000 ft, set APPROACH & FLARE lights, WING INSPECTION lights, the LOGO light, the FASTEN BELTS sign and the NO SMOKING sign switches OFF.
- 24. Press the PERF button on the FMC to access the performance page. You can monitor your performance parameters from there.
- 25. When you reach your cruising ceiling (24,000 ft), the autopilot will automatically set itself in the Altitude Hold mode.

25a

185

▲162 △174

HDG 090°

O- VOR1

LNAV

Q400

CRUISE

Š

CLIMB

AKEOFF,

9

ART

Δ

26. Once you pass transition altitude (3000 ft in Europe, 18000 ft in the US), adjust altimeter setting to standard barometric pressure (29.92 in Hg). Do it SLOWLY or your autopilot will start freaking out since you are changing his pressure reference. Using STANDARD pressure is done in order to use flight levels as a reference. This means you will be using a standard barometric pressure of 29.92 in Hg, which is also used by other aircraft in the airspace instead of a local one given by an Air Traffic Controller. If pilots don't use a "standard" barometric pressure, different aircraft may collide in flight since they don't use the same pressure to define their current altitude. This is why higher altitudes are defined as "flight levels" (i.e. FL240 would be 24000 ft).

CRUISE

- 1. During cruise, set power limit to MCR (Max Cruise)
- 2. There is no autothrottle system here: manage your speed using the throttle.
- 3. Use the chart below to get an approximate recommended torque value. For a cruise at 24000 ft, I would recommend around 50 % TRQ. More detailed charts are available in the Bombardier POH (Pilot **Operating Handbook).**
- 4. You can set your condition levers to 850 RPM if you prefer to have a quieter cabin. However, this is optional.
- 5. Keep monitoring your instruments in case of icing conditions. We will have an example in the ICING **PROTECTION** section.

												56666 256							
	ISA -10								ISA										
	Long Range				Intermediate			High Speed			Long Range			Intermediate			High Speed		
FL	KIAS	TRQ %	FF lb/hr	KIAS	TRQ %	FF lb/hr	KIAS	TRQ %	FF lb/hr	KIAS	TRQ %	FF lb/hr	KIAS	TRQ %	FF lb/hr	KIAS	TRQ %	FF lb/hr	
60	228	39.0	2039	235	43.5	2174	245	46.1	2251	226	38.9	2054	234	43.5	2195	245	46.8	2292	
100	216	36.6	1840	248	51.7	2260	282	70.1	2218	214	36.5	1857	246	51.9	2291	282	71.4	2833	
140	211	37.0	1734	246	53.2	2163	284	75.9	2834	210	37.3	1764	246	54.0	2211	284	77.6	2918	
180	211	39.0	1667	246	56.3	2162	285	82.5	3011	209	39.2	1693	240	54.1	2120	274	75.3	2789	
220	199	37.0	1517	231	51.0	1923	264	71.3	2598	200	37.9	1559	227	50.4	1929	257	67.3	2484	
250	191	36.1	1437	219	47.5	1766	248	63.5	2309	191	36.9	1476	216	47.1	1778	241	60.4	2225	

50000 LBS

Introduction to Autopilot

Many newcomers in the flight simulation world have this idea that the autopilot is the answer to EVERYTHING. And I mean: e-v-e-r-y-t-h-i-n-g. Spoiler alert: it's not. The autopilot is a tool to help you fly to reduce your workload, not a tool to replace the pilot. The autopilot should be seen as a system that can make your life easier. This is why you need to be familiar with its capabilities and be able to read what the FMA (flight mode annunciator) is telling you.

It is important to take note that there is no autothrottle system on the Dash 8. Why? Because autothrottle systems are expensive and a regional turboprop may not need it much for short flights. Instead, you will be managing your airspeed with a combination of aircraft attitude and throttle input. This means you will be changing throttle position during most of the flight.

AFCS: Automatic Flight Control System

The AFCS provides several major functions: the flight director (FD) provides lateral and vertical guidance to fly the aircraft, either manually or automatically.

While most airliners like the 737 or the A320 use an autothrottle system, the Q400 does not have one. The AFCS will move the control surfaces and trim tabs to match what command you send the autopilot. As an example, if you set a target altitude and IAS, the control surfaces will set the aircraft in an attitude that allows the aircraft to reach the target altitude at the set IAS, meaning that you will control your climb/descent rate with the throttle.

In other words, the autopilot will change your aircraft's attitude based on what you want to do, but you need to make sure that your throttle and propeller speed (condition levers) give you enough power.

Button	Description
IAS	Vertical autopilot changes aircraft attitude to hold indicated airspeed
VS	Vertical autopilot changes aircraft attitude to hold vertical speed
VNAV	Vertical autopilot changes aircraft attitude to follow vertical navigation path determined by the FMS
ALT	Vertical autopilot changes aircraft attitude to fly to target altitude
ALT SEL	Arms vertical guidance to capture the pre-selected altitude
HDG	Lateral autopilot tracks selected heading
NAV	Lateral autopilot tracks navigation flight plan determined by the FMS
BC	Lateral autopilot tracks backcourse localizer displayed on active PFD
STBY	Standby clears all active lateral and vertical flight director modes.
APPR	Lateral and vertical autopilots track localizer and glide slope targets for approach
АР	Engages/Disengages Autopilot
YD	Yaw Damper
HSI SEL	Selects which PFD (Primary Flight Display), either the pilot's or copilot' the FD (Flight Director) is coupled to.

Q400

AUTOPILOT

PART

Knobs	Description	
COURSE	Sets ILS course	
HDG	Sets autopilot heading for HDG mode	
NAV SOURCE	Selects which system is used as a navigation source (Flight Management System 1 or 2, Instrument Landing System, etc.)	
ALT	Sets target altitude	
AUTOPILOT PITCH THUMBWHEEL (NOSE DN/ NOSE UP)	Sets autopilot pitch attitude (which can be used by flight guidance modes VS, PITCH HOLD and IAS.) 109	

FMA (Flight Mode Annunciator)

The FMA displays the status of the autopilot vertical mode, lateral mode, and autopilot status.

First row is for ENGAGED systems, second row if for ARMED systems, third row is for reminders.

First column is for the LATERAL autopilot modes, center column is for the error messages, and right column is for the VERTICAL modes.

White messages indicated that the autopilot mode is ARMED but not ENGAGED.

FMA (Flight Mode Annunciator)

0

PART 7 - AUTOPILOT Q400 H

1: Lateral	2: Failures	3: Vertical	4: Autopilot & Yaw Damper
ROLL HOLD: holds target roll attitude	AFCS FAIL: Failure of the Automatic Flight Control System	PITCH HOLD: holds current attitude or pitch	TCS: Tactile Control Steering allows the pitch and roll autopilot actuators to declutch and allow the pilot to manually control pitch and roll while autopilot is active.
HDG HOLD: holds current heading	AP PITCH TRIM FAIL: autopilot pitch trim failure	IAS: indicated airspeed mode	AP: autopilot engaged
WING LVL: holds wings level	AUTO TRIM FAIL: auto-trim system failure	VS: vertical speed mode	AP INHIBIT: autopilot inhibited
HDG SEL: holds selected heading	YD NOT CENTERED: yaw damper not centered	ALT: altitude hold mode	YD INHIBIT: yaw damper inhibited
VOR: VHF Omnidirectional Range mode	L or R FD FAIL: Left or Right Flight Director failure	GA: go-around mode	AP/YD: DISENGAGED: Autopilot/Yaw Damper disengaged
VOR OS: VOR overstation mode	AFCS CONTROLLER INOP: Automatic Flight Control System controller is inoperative	GS: glide slope mode	MISTRIM TRIM NOSE UP: aircraft is mistrimmed and needs nose up trim
LOC: localizer mode		EL: EL mode	MISTRIM TRIM NOSE DOWN: aircraft is mistrimmed and needs nose down trim
VOR APP: VOR approach mode		VNAV PATH: Vertical navigation path mode	MISTRIM TRIM L WING DN: aircraft is mistrimmed and needs left down aileron trim
VOR APP OS: VOR approach mode overstation		VNAV FLC: Vertical navigation flight level change mode	MISTRIM TRIM R WING DN: aircraft is mistrimmed and needs right down aileron trim
BC: Backcourse localizer		VNAV ALT: Vertical navigation altitude capture mode	
LNAV: Lateral navigation mode			
LNAV HDG SEL: LNAV heading select mode			111
LNAV HDG INT: LNAV heading intercept mode			±±±

Engines

HYDRAULICS

Š

ENGINES

00

ART

Δ

Q400

Turboprops like the Q400 A turboprop engine is a turbine engine that drives an aircraft propeller. In contrast to a turbojet, the engine's exhaust gases do not contain enough energy to create significant thrust, since almost all of the engine's power is used to drive the propeller.

The Q400's "Q" stands for "Quiet". All Dash 8s delivered from the second quarter of 1996 (including all Series 400s) include the Active Noise and Vibration Suppression system designed to reduce cabin noise and vibration levels to nearly those of jet airliners. To emphasize their quietness, Bombardier renamed the Dash 8 models as the Q-Series turboprops (Q200, Q300, and Q400).

Turboprops being quite noisy, this is why there are certain power management modes to minimize engine noise for passenger comfort and to follow airport noise restriction rules.

PW150A COMPONENTS

"Q" stands for "Quiet"

ACTIVE NOISE AND VIBRATION SUPPRESSION

ACTIVE NOISE AND VIBRATION SUPPRESSION

IS OFF

IS ON

ACTIVE NOISE AND VIBRATION SUPPRESSION IN Q400 PROVIDES THE MOST COMFORTABLE NOISE LEVEL ON-BOARD.

Engines

HYDRAULICS

8

ENGINES

00

ART

0

Q400

The engines are controlled with:

- Throttles (controls power level, mainly monitored through Torque indication)
- Condition levers (controls propeller speed).
- Power mode buttons restrict engine power limits (MTOP = Maximum Takeoff Power, NTOP = Normal Takeoff Power, RDC NP LDG = Reduced Propeller Speed Landing, MCL = Maximum Climb, MCR = Maximum Cruise).
- FADEC (Full Authority Digital Electronic Control) controls all engine parameters based on flight conditions and the pilot's control input.
- PEC (Propeller Electronic Control) controls propeller blade angle and speed, based on condition lever position and protection sub-systems like autofeathering.
- ANVS (Active Noise and Vibration Suppression) system is active if the condition levers are at 850 RPM (minimal noise and vibration, which makes flight more comfortable for passengers) **Condition Levers**

Throttle Power Levers Positions: MAX / FLIGHT IDLE / DISC / MAX REV

- MAX: 1020 RPM (Normal Takeoff Rating) MCL: 900 RPM (Maximum Climb Rating) MIN: 850 RPM (Maximum Cruise Rating)
- START & FEATHER: Propeller Blade Angle is Feathered during engine start
- FUEL OFF: Fuel shutoff

Power Setting Logic

HYDRAULICS Š ENGINES 00 4

Δ

Q400

Q400 HYDRAULICS Š ENGINES 00 ART ۵.

Effects of Turboprops

Propeller Asymmetric Lift Distribution Effect

At high engine power, the air moving through the propellers is accelerated in order to produce the thrust. This also increases the local velocity of air flowing over the parts of the wing behind the propellers which generate more lift at a given airspeed.

The accelerated flow behind the propeller also causes a rolling phenomenon that is the result of asymmetric propeller loading. As you can see, when the center of thrust shifts right as the angle of attack is increased, the accelerated air behind the propeller shifts in a similar fashion.

Hydraulics

The Q400 has four main hydraulic systems.

An electrically driven Standby Hydraulic Pump operates as a backup to the No. 1 hydraulic system. It operates during takeoff and landing phases.

A Power Transfer Unit (PTU) operates as a backup to the No. 2 hydraulic system. The PTU is powered by the No. 1 hydraulic system.

If both engines fail, where No. 1, No. 2 and Standby Hydraulic pumps are all unavailable, the DC-Motor-Driven_Pump (DCMP) in the No. 3 hydraulic system provides sufficient hydraulic power to the elevators for pitch control.

HYDRAULIC SYSTEM	SYSTEMS POWERED
No. 1 (Left)	 Flaps Rudder (Lower Power Control Unit) Inboard roll spoilers Elevators (Outboard Power Control Units) Main Wheel Brakes/Anti Skid
No. 2 (Right)	 Landing Gear Nosewheel Steering Outboard Roll Spoilers Emergency/Parking Brake Rudder (Upper Power Control Unit) Elevators (Centre Power Control Units)
No. 3 (Aft)	Left Elevator (Inboard Power Control Unit)Right Elevator (Inboard Power Control Unit)
Emergency Hydraulic System	Alternate Landing Gear Extension System

Ice Protection System - Intro

The Q400 was built to fly in cold northern countries like Canada, where icing is a common reality for regional turboprops. Icing can have a significant impact on flight performances and can make an aircraft stall even if it remains in airspeeds above stall speeds.

Therefore, a system of sensors allows you to monitor icing conditions and accumulation, in addition to another system of heaters and inflatable rubber deicer boots is used to break the ice if it starts accumulating.

Wing Deicer Boots

PROTECTION

6

ART

Δ

Q400

Figure 15-17. Cross-section of a pneumatic deicing boot uninflated (top) and inflated (bottom).

Dangerous Weather | How icing affects flight

Source: 'Air Traveler's Handbook'

12

13

14

15

118

PROTECTION

Ľ

5

PART

Ice Protection System – Ice Detection & Deicing

If ice is detected, an amber "ICE DETECTED" caution will appear on the engine page. You must :

- Set Pitot Heat switches ON
- Set Boot Air to NORM
- Set Engine Intake heaters ON
- Set prop de-icing switch ON
- Set windshield and window heat ON
- Set airframe de-icing mode to either SLOW or FAST
- Set REF SPEEDS switch to INCR
- Once ice is being either thawed or broken, the ICE DETECTED caution will turn to white. If the caution stays on, don't worry, it's normal. It's how the system is in real life.

Ice Protection System – Icing Levels

Keep in mind that there are different icing levels that require different actions.

ICING LEVEL 1: used in all conditions

- PITOT HEAT switches ON
- WINDSHIELD HEAT ON (AS NECESSARY)

ICING LEVEL 2: used on ground when icing conditions exist, temperature + 10 deg C or below, in-flight + 5 deg C or below

- PITOT HEAT switches ON
- WINDSHIELD HEAT switch ON
- PROP HEAT switch ON
- Engine Intake Doors OPEN
- REF SPEEDS INCR switch ON (only while in-flight above 1000 ft)

ICING LEVEL 3: used in flight during visual accretion or ICE DETECTED is displayed on Engine Display

- PITOT HEAT switches ON
- WINDSHIELD HEAT switch ON
- PROP HEAT switch ON
- Engine Intake Doors OPEN
- REF SPEEDS INCR switch ON (only while in-flight above 1000 ft)
- Airframe Mode Select FAST (during takeoff when above 1000 ft AGL, Holds, approaches, landings) or SLOW (during cruise when sufficient to remove ice)

Ice Protection System - Airspeeds

PROTECTION

5

ART

Δ

Q400

De-icing systems are not used on takeoff. Why? The reason is because with airframe de-ice operative, the de-ice boots on the leading edges of the wing and tail are inflated, altering the shape of the leading edge, and so the stall speed is increased by 20 kts (this is why you operate the VREF+20 switch with deice boots ON). Concretely, this means:

- If your aircraft would normally stall at 100 kts and you currently fly at 110 kts to be 10 kts above stall speed, you would be fine in normal weather conditions.
- However, with icing conditions, the 110 kts speed that you would normally consider to be "above stall" is now dangerous since your stall speed "with icing" is now 120 kts.

You will often hear about this "REF SPEEDS INCREASE" switch. The only thing this REF SPEEDS INCREASE switch will do is that it will change the stall speed tape on your Primary Flight Display's speed tape to make sure that you fly without stalling. This will make sure to warn you: "Hey, make sure you fly faster since all that ice and those inflating boots are making your wings generate much less lift than usual."

Here is a very cool website that explains the effects of icing on stall speed: <u>https://aircrafticing.grc.nasa.gov/1 1 3 3.html</u>

Dangerous Weather | How icing affects flight

Icing Aerodynamics Simulator

Instructions: 1) Select a speed setting using the buttons at right 2) Select a flap setting 3) Click the "GO!" button to view the results of the settings

REF SPEEDS

INCREASE switch

V _{S0} +	
V _{S1} -	
V _{S1} +	No Flaps
VFE	Full Flaps
VErgisel	

Weather Radar

PROTECTION

Ľ

5

PART

Q400

The weather radar can help you determine what icing zones are ahead.

The color code indicates the intensity of precipitations:

- Green: Level 1 Intensity, light precipitations
- Yellow: Level 2 intensity, medium precipitations
- Red: Level 3 intensity, heavy precipitations
- Purple: Level 4 intensity, very heavy precipitations

PLANNING DESCENT

So, you've finally made it all the way up to your cruising altitude? Congrats! Now, we have a bit of planning to do.

First, let's introduce you to the ILS (Instrument Landing System). This system exists to guide you during your approach.

- The Localizer is generally an array of antennas that will give you a lateral reference to the center of the runway.
- The Glide Slope station will help you determine the descent speed you need in order to not smack the runway in a smoldering ball of fire.

RUNWAY

200

40

tog.

MM

MIDDLE MARKER

VHF LOCALIZER

TRANSMITTER

Antenna is on center line

UHF

GLIDE SLOPE

TRANSMITTER

A REAL PROPERTY OF A REAL PROPERTY OF Localizer Array Station at Hannover **Glide Slope Station at Hannover** Great video explanation of ILS 90Hz https://www.youtube.com/watch?v=KVtEfDcNMO8 Localizer OM COMPASS LOCATOR OUTER MARKER (When Installed) Lateral Axis LOM 150Hz LOCALIZER COMPASS LOCATOR 90 (When Installed) 150 CYCLE CYCLE 90Hz Glideslope GS aerial 90 150 CYCLE CYCLE 50 GLIDE SLOPE 150Hz

214

Q400

~1,000ft

Vertical Axis

aerial

LOC

Q400 +++

PLANNING DESCENT

Final Approach Course: 057

This is the heading you will take when approaching for final landing.

Minimums Decision Height: 200 ft (or 298 ft Decision Altitude)

This is the minimum "decision altitude" (DA) during landing. If you go lower than 298 ft, you are committed to land no matter what happens. Above 298 ft, you can still miss your approach and go around. You can also use the Decision Height (DH) of 200 ft, which is what we will use.

ILS Frequency: 109.30 MHz

This is the ILS system frequency you will track to guide your aircraft for landing.

Missed Approach Standby Frequency: 116.30 MHz

VOR "MONTREAL" (YUL) will be the beacon we will track in case we miss our approach and have to go around.

Missed Approach Procedure

In case we miss our approach, the procedure is to climb straight ahead. When passing 700 ft, we climb LEFT on heading 358 to 3000 ft. We then turn left directly towards YUL VOR.

Transition Level & Transition Altitude

The transition altitude is the altitude at or below which the vertical position of an aircraft is controlled by reference to altitudes (18000 ft on chart). The transition level is the lowest flight level available for use above the transition altitude. According to the chart, the transition altitude gives us FL180 as well, or 18000 ft.

Here is a great link to know how to read these charts properly: https://community.infinite-flight.com/t/how-to-read-an-approach-chart/8952

DNIDN 1 Š т U APPROA 9 2 4 Δ

SET VNAV PROFILE

While we are cruising, we can plan our VNAV (Vertical Navigation) planning for the descent and approach to Montreal.

- 1. Adjust your navigation display scale to get a good view of the waypoints ahead of you.
- 2. We intend to descend to HABBS waypoints to the restriction of 9000 ft. We have to first set the autopilot to its target altitude, then program a vertical navigation profile to follow in order to reach this target altitude.
- 3. Scroll mousewheel on ALT knob to set 9000 ft as the autopilot's target altitude.
- 4. Press ALT SEL to enter the new altitude target.

1

ANDING 7 8 J APPROA 9 PART

Q400

Q400

SET VNAV PROFILE

Now, we will set a restriction altitude of 9000 ft to the HABBS waypoint via the FPL page.

- 5. Go in FPL page
- 6. Click NEXT until you reach the HABBS waypoint
- Set altitude restriction by clicking LSK next to HABBS in the CYUL/YUL ALT/FL column.
- 8. Type 9000 in the MCDU keypad.
- 9. Click ENTER to set altitude restriction to HABBS.

JEPPESEN MONTREAL, QUE

RNAV STAR

24 FEB 17 EFF 2 Mar 10-2B

0

SET VNAV PROFILE

Now, we will program our vertical descent profile in order to reach HABBS waypoint at a restriction altitude of 9000 ft. 10. Go in VNAV page

- 11. Click on the LSK next to the « TO » field to set a new target waypoint for the end of the VNAV descent profile.
- 12. On MCDU keypad, type « 8 » since it is selection item number 8 on the MCDU keypad (HABBS waypoint will be the target waypoint for the end of the VNAV descent profile) and press ENTER.
- 13. On MCDU keypad, leave the « Distance/Offset to waypoint » field (nm) empty and press ENTER.
- 14. On MCDU keypad, type « 9000 » to set a target/restriction altitude of 9000 ft to HABBS and press ENTER.
- 15. On MCDU keypad, type « 1500 » to set a vertical descent speed target of 1500 ft/min and press ENTER.
- 16. And there you go! Your vertical navigation profile to the HABBS waypoint at 9000 ft is set. You just need to arm the autopilot VNAV mode.

ENGAGE AUTOPILOT VNAV & START DESCENT

- 17. Your TOD (Top of Descent) point will be identified by a circle marker with « TOD » on your navigation display.
- 18. When you are near the TOD point, a pink « V » will appear with a glide slope scale.
- 19. When you receive the « VERT ALERT » (top of descent alert) 2 minutes prior to TOD, press the VNAV autopilot mode button. If you attempt to engage VNAV without seeing this message, it will not work.
- 20. You will begin your descent following the VNAV profile once the « VNAV PATH » autopilot indication is displayed.
- 21. Control your airspeed by throttling back but keep enough power to maintain 250 kts or less.

IGVUD

SET UP APPROACH

- 22. Hold the FORMAT button a few seconds to display the ILS format page on the navigation display (cyan lines)
- 23. Rotate the COURSE autopilot knob to set the ILS course to 057 (heading of Montreal Runway 06L).
- 24. Hold the FORMAT button a few seconds to display the normal NAV page on the navigation display.

DNIDN 1 Q Т U APPROA

0

_

ART

Δ

Q400

SET UP APPROACH

- 25. Continue your descent to HABBS.
- 26. Set your radio frequency to CYUL (Montreal) ATIS (133.700).
- 27. Listen to ATIS broadcast and adjust your altimeter setting to the Dorval setting (29.52 in Hg in our case)
- 28. Set Decision Height to 200 (DH) by setting DH/MDA outer knob to DH and rotating inner knob. (*Note: You could alternatively set MDA to 298 ft as per CYUL chart.*)
 29. Set up GPWS (Ground Proximity Warning System) switch to 15 as we intend to land with 15 degrees of flap.

SET UP APPROACH

- 30. We will use flaps 15 for landing since our runway is 11000 ft and we want to have the best recovery performance.
- 31. Select the PERF page to get estimated weight on landing (58846 lbs).32. Use table to gain FLAPS 15 V-SPEEDS.
 - We plan for icing conditions
 - ATIS information gives us a 10 kts wind with no gust
 - VAPP (Approach Speed) @ 62000 lbs = 126 kts
 - Add 20 kts since flying in icing conditions
 - Add half of wind speed (5 kts)
 - Add gust wind (0 kts in our case)
 - Final VAPP = 126 + 20 + 5 + 0 = 151 kts
 - VREF (Reference Speed) @ 62000 lbs = 126 kts
 - Add 20 kts since flying in icing conditions
 - Add half of wind speed (5 kts)
 - Add gust wind (0 kts in our case)
 - Final **VREF** = 126 + 20 + 5 + 0 = **151 kts**
 - VGA (Go-Around Speed) @ 62000 lbs = 116 kts
 - Add 20 kts since flying in icing conditions
 - Add half of wind speed (5 kts)
 - Add gust wind (0 kts in our case)
 - Final **VGA** = 116 + 20 + 5 + 0 = **141 kts**
- 33. Click on SEL button to select speed bugs and turn SPEED BUG knob to set VAPP (WHITE TRIANGLE, 151 kts) and VGA (BLACK TRIANGLE, 141 kts).

Use Flaps 15º

- Runways greater than 7000ft
- Dry conditions with no tailwind
- Gusty conditions,

٠

٠

Windshear conditions are forecast, Flaps 15 gives best recovery performance.

Use Flaps 35º

- Runways less than 7000ft
- Tailwind operations
- When the runway is contaminated
- Icing conditions during landing (with the REF SPEEDS INCR switch on)

FLAPS 15°		32	
WEIGHT	Vapp	V ref	V ga
39.500 LB	106	105	105
44.000 LB	106	106	105
48.500 LB	112	112	105
53.000 LB	117	117	107
57.000 LB	122	121	111
62.000 LB	126	126	116
64.000 LB	129	129	119

* When flying in icing conditions, Add 20 kts to V app, V ref, V ga for flaps 10°, 15° and 35°

1

Q400

DNIDN

1

8

т

U

APPROA

9

4

Δ

DNIDNA Q APPROACH 9 ART Δ

Q400

SECURING APPROACH

34. When reading 9,000 ft at HABBS waypoint, set your lights for landing (APPROACH, FLARE, FASTEN BELTS, NO SMOKING lights all ON)
35. Set TANK 1 and TANK 2 AUX PUMP switches ON
36. Set STANDBY HYDRAULIC PRESSURE pump switch ON
37. Set PTU (Power Transfer Unit) CONTROL switch ON
38. Set landing gear down
39. Set flaps lever to 15 deg
40. Set condition levers to MAX

41. Set throttle to maintain airspeed above 145 kts

Minimum Flaps Speeds

Flaps 0 (clean) = 175kts Flaps 5 = 160 kts Flaps 10 = 150 kts* Flaps 15 = 145*

*The gear must be down in this situation, or else you'll get a configuration/gear warning.

Q400 **ANDING** Ĺ 8 APPROACH 9 PART

ľ

SECURING APPROACH

- 42. Once HABBS waypoint is reached, descend to XULTA waypoint aiming for a target altitude of 3000 ft. You can set another VNAV profile as shown previously.
- 43. Select altitude target of 3000 ft by rotating ALT knob.
- 44. Press ALT SEL to set altitude target.

UNIVERSAL

ABBS

7

DATA

NAY

XULTA

106

XULTA

VNAV DTD

C R S 0 5 7

42

3

6

9000

LIST PREV

TUNE MENU NEXT

9000

3000

3000

Δ

7

2

5

8

FINAL APPROACH

ANDING

8

J

APPROA

9

ART

Δ

Q400

- 45. Switch NAV source to ILS1 (cyan). Press and the FORMAT button to show ILS (Instrument Landing System) localizer data on your navigation display page.
- 46. Once you have reached XULTA, press the APPR (Approach) autopilot mode
- 47. The autopilot will follow your approach in LNAV mode until you can capture the localizer and align yourself laterally with the ILS approach. Once the localizer is captured, the autopilot in APPR mode will try to capture the glide slope.

FINAL APPROACH

- 48. When LOC (localizer) is captured, the PFD will indicate in green that the "LOC" autopilot mode is active. 49. When glide slope is captured, the PFD will indicate in green that the "G/S" autopilot mode is active.
- 50. Once localizer (lateral guidance) and glide slope (vertical guidance) are both captured, you can now set your autopilot altitude to the Go-Around Altitude of 3000.

Q400

LANDING

- 1. The APPR autopilot mode will guide you to the runway, but keep in mind that it is not an auto-land system. You will have to land manually.
- 2. Set BLEED FLOW switch to MIN to maximize available engine power
- 3. Make sure you are trimmed appropriately
- 4. Throttle back to around 18 % Torque to stabilize speed on final. DO NOT CHOP THE POWER.
- 5. Limit your pitch to 5 deg maximum. Tailstrike happens approximately at 7 deg nose-up pitch.

LANDING Š **APPROACH** 9 PART

LANDING

- 6. When 200 ft above runway, disconnect autopilot.
- 7. Touchdown at approx. 5 kts below VREF, which is 151 5 = 146 kts. This may seem hella fast, but keep in mind that we have the REFERENCE SPEED INCREASE switch ON still because of icing conditions.
- Once all wheels are down, press and hold "F2" 8. ("Throttle decrease quickly" binding) to deploy thrust reversers until you slow down enough to vacate the runway safely.

Throttle: Flight Idle

Condition Lever: START/FEATHER

Throttle: DISC

Condition Lever: MIN 850 Flat Prop Pitch (Disc shape)

Throttle: MAX REV

Condition Lever: MIN 850 **Reverse Prop Pitch**

Throttle: Flight Idle

Feathered Prop Pitch

ATR72 Propeller Pitch

in Reverse

Condition Lever: MIN 850

Forward/Normal Prop Pitch

Normal 'Forward' Pitch

Feather

Pitch

Flat Pitch

The Thrust Reverser lever can be moved by pressing and holding the "Throttle (decrease quickly)" control mapped to your joystick. Make sure that the "Repeat" slider is set fully to the right. The default key binding is "F2".

Take note that the Reverse Thrust lever can only be engaged if your throttle is at DISC (flat propeller pitch) first, then to MAX REV once the engine has stabilized to IDLE regime and all landing gear wheels are on the ground. There is a mechanical stopper that prevents you from engaging thrust reversers directly from high throttle settings.

8a **Thrust Reversers Disarmed** Throttle at IDLE No Reverse Thrust Generated **Thrust Reversers** Armed Throttle at MAX REV

Reverse Thrust Generated

DNIDN 1 8 Ι Ū APPROA 9 ART 0

Q400

